
International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

Toward Defining the Intersection of
Forensics and Information Technology

Gregory A. Hall
Wilbon P. Davis

Texas State University-San Marcos

Abstract

Information technology has become infused with many aspects of everyday life.
Naturally, aspects of information technology have become more common in both civil
and criminal law. However, the people called upon to address these technological
issues are typically versed exclusively in either law or technology. The authors contend
that a new discipline is emerging from the intersection of forensics and information
technology. They argue for a formalization of the process by which this discipline
evolves and a broadening of the definitions currently in place. A case study is
presented to illustrate the shortcomings of current, narrowly defined terms and the need
for individuals with broader expertise. The authors conclude by proposing some of
these areas of expertise.

Introduction

In Section I, the authors call for a concerted effort to produce a working taxonomy of the
fields comprising what is known to many as digital forensics. In Section II, they discuss
the mechanism by which disciplines often come to be defined. Section III projects this
mechanism to a likely evolution of the taxonomy under discussion, and in Section IV a
case study that crystallizes the issues involved and gives a concrete example for the
need for a taxonomy is presented. Section V summarizes the arguments supporting the
goals outlined in Section I.

Section I

Although there are myriad definitions of digital forensics, network forensics, software
forensics, computer forensics, etc., each is a sub-discipline of forensics, that is, "The
use of science and technology to investigate and establish facts in criminal or civil
courts of law" (American Heritage Dictionary of the English Language, 2000). However,
the connection of these sub-disciplines with computing appears in two ways: as
investigative tools and as evidence. The authors contend that it is time to begin defining
an umbrella discipline, a branch of knowledge, incorporating the listed areas, and
others, as sub-disciplines, while acknowledging the limitation of the scope to information
technology connections. It is also time to begin formulating and standardizing
definitions. While the authors believe that it is premature to impose such definitions or

www.ijde.org

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

even the choice of terms, for the purposes of this discussion, the phrase “information
systems etiology1” (ISE) will be used to refer to this umbrella discipline. Note that the
definition of digital forensics adopted in Caloyannides (2001) had abstraction and
unification as a goal; however, ISE will be much more inclusive.

In academia, physics, chemistry, and biology are considered to be sub-disciplines of
science. Loosely speaking, their association is a result of the recognition of the
commonalities in their methods, in particular, the scientific method, while their
distinctions from one another result from the problems they address. Their organization
as well as their respective sub-disciplines(cosmology, biochemistry, genetics) and other
disciplines, such as mathematics, forms a hierarchy essential to their study. This
hierarchy also is essential to accessing the knowledge the disciplines embody, just as
the taxonomy of biology is essential to guiding its research. The establishment of such a
classification scheme and relevant definitions might be a boon to research in ISE.

The above definition of forensics consists of two parts. The first refers to the use of
science and technology in investigation and the second to the requirement that facts
established must be presentable in a court of law. We propose both a generalization
and specialization of this definition to constitute a definition of ISE.

The specialization of forensics to ISE comes from analyzing the characteristics of the
definitions of disciplines and from the definition of forensics. First, definitions of
disciplines imply criteria that enable a person to determine if a methodology or problem
belongs to the discipline. Inclusion in ISE requires an element of investigation. Second,
these definitions allow the distinction of disciplines. ISE is distinguished from other sub-
disciplines of forensics by the involvement of an element of information technology as
either a tool or an element of investigation.

The generalization portion of modifying the definition of forensics to define ISE removes
the emphasis on admissibility in court of all findings. The objective of an investigation of
a digital incident often is not a prosecution; rather, it may be to determine a root cause
leading to recurrence prevention or process improvement (Stephenson, 2003 & 2004).
And, relaxing the strict legal requirement on the definition may lead to the adoption of
methods invented for law enforcement for broader domains as described by Ciardhuáin
(2004).

Agreement on a definition of ISE will promote cooperative research among sub-
disciplines, provide accessibility to results, and provide a classification hierarchy that will
provide guidance for educators in defining a common body of knowledge to support a
variety of sub-disciplines. A natural result of the hierarchy will also be the definition of a
skill set and knowledge base enabling possessors of same to coordinate and manage
ISE activities across a broad range of application domains.

1The definition of etiology we choose is “the study of causation” to emphasize the investigative component.

www.ijde.org 2

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

Section II Evolving a Definition for the Discipline

Examining the evolution of a specific discipline is enlightening. Software Engineering
has its roots in computer programming. Very early, the software development industry
faced problems related to the quality of software. Some of the first problems were
associated with the mental burden that expressing computer instructions in low-level
programming languages imposed on programmers and which caused them commonly
to make mistakes when coding algorithms. The creation of higher level programming
languages allowed programmers to operate at a higher level of abstraction, shifting
more of the burden of translating an algorithm into computer instructions onto the
computer. However the introduction of higher level programming languages did not
completely solve the problem of poor quality software. Researchers then turned their
attentions toward the design or architecture of software applications. Poorly structured
software suffered from low reliability, poor efficiency, and high maintenance costs. New
design methodologies emerged to improve the internal structure of the systems.
Improving the quality of the software’s design brought about larger improvements in
software quality than that brought on by the shift to high level languages. However,
significant problems still persisted in software development. Eventually new
mechanisms for eliciting and specifying the requirements of software systems were
developed. This addressed the fact that it was entirely possible to craft a well designed
and brilliantly implemented solution to the wrong problem. At every stage, the next
substantive improvement came from the recognition of commonalities in a set of
problems, the abstraction of techniques developed to solve them, and a broadening of
the definition of Software Engineering.

There is still considerable ongoing discussion concerning the body of knowledge that
defines Software Engineering. This debate is inevitable in light of the ad hoc manner in
which the discipline came about. It began as a group of independent researchers each
focusing on a low level problem that had to have an immediate solution. Solving the low
level problem made the higher level problems visible. Research then went after the
higher level problems. The initial focus on low level “symptoms” caused many
researchers to initially define this new discipline in terms of their specific sub-disciplines.

One of the earliest definitions for the discipline of software engineering came from F. L.
Bauer in 1972. The definition emphasizes the creation of computer programs.

Software Engineering deals with the establishment of sound engineering
principles and methods in order to economically obtain software that is
reliable and works on real machines (Bauer, 1972).

Bauer’s definition emphasizes the economics, reliability and practicality of computer
programs. One of the driving forces in establishing software engineering as an
engineering discipline was the high cost of creating computer programs. Lack of
disciplined development processes led to cost over-runs and unreliable software. The
stipulation that the software work on real machines distinguished software engineering
from theoretical computer science. Real world constraints had to be considered.

www.ijde.org 3

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

While Bauer’s definition addressed the most obvious critical issues facing the software
development community, it did not cover all of the bases. While the ultimate product of
software development is a computer program, there are additional products that drive
the engineering process and relate directly to the final quality of the computer program.
In 1976, B. W. Boehm extended the definition of software engineering to include these
additional development artifacts.

Software Engineering is the practical application of scientific knowledge in
the design and construction of computer programs and the associated
documentation required to develop, operate, and maintain them. It is also
known as software development or software production (Boehm, 1976).

The main contribution of Boehm’s definition of software engineering is that it has been
extended to include the documentation associated with the computer program. It is the
documentation that encapsulates what the program will do and how it will do it. In a
sense, the computer program is merely an effect of this documentation. While the
computer program may contain a fault in its coding, it is the documentation (or lack of
documentation) that led to that fault. Focusing solely on the computer program in cases
of potential negligence will almost always miss the true source of the problem.

Boehm’s definition also addresses the fact that computer programs have to be
maintained. Maintenance activities involve such things as correcting faults, adapting
programs to new hardware and operating systems, adding new features, and even
preventing potential problems.

A standard definition for what software is and what software engineering means was
provided by the IEEE in the IEEE Standard Glossary of Software Engineering
Terminology in 1990.

Software. Computer programs, procedures, and possibly associated
documentation and data pertaining to the operation of a computer system.

Software Engineering. (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of
software; that is, the application of engineering to software. (2) The study
of approaches as in (1).

The IEEE definition of software establishes it as more than just a computer program.
Software also refers to the documentation and data for the program. The IEEE
definition for software engineering adds the notion that the development, operation and
maintenance of software needs to be quantifiable. The ability to measure and validate
software engineering processes and products is what establishes software engineering
as an engineering discipline.

Even in light of a standard definition for the field of software engineering, the duties of a
software engineer are still vast and varied. Some “software engineers” are

www.ijde.org 4

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

programmers, others are system architects, still others focus on requirements gathering
and specification. Some software engineers work entirely in management or leadership
roles with no direct contact with the technical aspects of development. Indeed, the field
is so broad that the most accurate definition may well be that software engineering is
“what software engineers do.” What is most important is that a software engineer is
aware of the many facets and interrelationships of the sub-disciplines that comprise
software engineering and that the software engineer knows how to access the literature
of these sub-disciplines as needed. There is still need for people with very specific
expertise, such as writing device drivers in assembly language, but software engineers
are needed to oversee the construction of the final product to ensure success.

The boundaries of a new discipline are often hard to define. The commonalities among
research areas help to determine that a new discipline is forming, but just how many of
these research areas there are and whether or not they belong within the context of the
new discipline is often unclear. As Software Engineering grew, several research areas
became a part of it. Among these were requirements analysis, software design, human
factors, programming languages, algorithms, testing, software measurement, project
management, and software security. Many of these research areas are heavily related
to other disciplines. In fact, as more was learned about the need for security in
computer systems, software security came out from under the umbrella of software
engineering and became part of the larger discipline of information assurance.
Basically then, the discipline grows to fill a void, with its boundaries defined when it
meets the boundary of another discipline. In some cases, a sub-discipline may have
found a home in another discipline, simply because it was “ahead of its time.” When the
real home for that sub-discipline is constructed, it moves to where it is most
comfortable.

Historically, the formation of a new discipline has been a slow process that happens in a
very ad hoc manner. Only after years of growing pains does the discipline become
defined to the level that real progress in research can be made. Without formalizing the
process, multiple factions arise, each of which claims to be defining the true discipline.
Establishing a widely agreed upon common body of knowledge for the discipline
becomes a political battle, with various sides arguing for their specific process (or
product) to be a part of it.

It seems clear that a new discipline is forming and is currently defined in terms of the
specific problems that need to be addressed. The authors believe the term “information
technology etiology” is descriptive, but what the discipline will eventually be called is still
not clear. Many different terms related to the area have been used in the literature to
date. Some of these terms and their various proposed definitions will be examined. The
implications of these definitions will be discussed. If steps are taken now to formalize
the process by which the definition of the discipline evolves, many of the growing pains
which other disciplines have had to endure may be avoided or at least lessened to a
substantial degree.

www.ijde.org 5

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

In summary, some of the lessons learned from the evolution of Software Engineering
applicable to ISE include:

• The discipline must acknowledge real world constraints,
• Abstraction is a powerful tool and should be foremost in the minds of

researchers,
• The equivalent of the maintenance process must be addressed, that is,

methodologies must be codified, standards must be set, and processes must be
improved.

• The ISE discipline will evolve naturally and achieve a form of stasis but we can
greatly influence the rate of progress toward that goal.

Section III Toward a broader definition

An apt analogy providing an inspiration for this proposal appeared when the authors
posed to themselves the question “What would be the current state of Software
Engineering if there had been an insistence that all work products would have to meet
published military standards?” The field might well have failed to discover and
incorporate the breadth of tools available to it and the contributions of software
engineering research to a variety of fields may never have materialized. Similarly, the
restriction of the term “forensics” to pursuits involving the courts may prove equally
stifling. However, legal admissibility of investigative artifacts should not be abandoned;
rather, it should become a differentiating characteristic among lower level subfields of
ISE and should be considered a “gold standard.”

A broader definition should lead to significant synergy with a variety of other fields. For
example, a cursory sample of methods to be exported to a broader domain outside the
legal system might include:

• Interrogation and testimony skills;
• Chain of custody formalisms;
• Data recovery techniques;
• Investigation techniques providing input to process improvement; and
• Investigation techniques providing input driving security research.

Currently, techniques from other fields are incorporated in an ad hoc manner into
computing related forensics. But, with study and understanding of the broader picture,
higher level techniques such as modeling and analysis from software engineering may
be brought to bear on outstanding forensics problems in a rigorous manner.

Ultimately, the skill set of its practitioners defines the application domain of a discipline.
A broader definition should invite the participation of computer scientists, officials of
criminal and civil courts, law enforcers, lawyers, psychologists, forensic accountants,
sociologists, educators and many other professions, all of whom would bring a rich set

www.ijde.org 6

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

of skills, varied viewpoints, and a collection of problems to the forum. The benefits of a
broader definition are many, while the costs are few.

Section IV A Case Study

Drawing on the example of Software Engineering, the authors contend that the
evolution of a new discipline can occur more smoothly if its emergence is recognized
early and steps are taken to formalize the process and to establish the boundaries of
that new discipline. If the process is left to occur in an unstructured manner,
commercial and political pressures can hinder and misdirect the growth of the discipline.

The authors of this paper were contacted to provide expert assistance in a civil lawsuit.
In conducting research into the current state-of-the-practice in digital forensics and
digital evidence, it became apparent that there is a need for a broader approach to the
problems of this discipline. The case study of that particular law suit is presented here to
justify broadening the scope of digital forensics to a more inclusive ISE.

(In the following narrative, names, dates, and locations which do not contribute to the
understanding of the fact have been withheld.)

A road contractor was using a piece of heavy, self-propelled machinery. An operator
had the machine in “park.” He placed a control in neutral and released the parking
brake. The machine immediately leapt forward causing life threatening injuries and
permanent disability to a man standing several feet in front of the machine.

The authors were contacted by the attorney of the victim to help sort out what had
happened. They soon became acquainted with the actions of many players in the
incident, referred to here as company C, the contractor, company S, the seller of the
machine, company M, the manufacturer, company H, the designer and supplier of the
hydraulic systems, and P, the programmer of the control system.

The class of equipment was capable of relatively fast speeds, was very large and
powerful, and required precision in some of its functions. Company M and its
competitors realized that computer control would allow for greater precision and
operating convenience at a decreased cost, so company M decided to introduce its first
“fly by wire” model. This model was introduced and dealer incentives were used to
speed its introduction into the market place.

A mechanical engineer consultant to the lawyer had identified the most likely location for
system failure and had been able to reproduce the anomalous behavior. M had chosen
to use a hydrostatic drive. Briefly, in this system an engine drives a pump which
circulates hydraulic fluid. This fluid can be used to drive motors. The engine can run at a
constant, optimum speed, while the motors can be controlled electronically by using
servos to tilt an internal plate. Generally, there are two controls involved in such a drive

www.ijde.org 7

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

train: an engine throttle and a control that governs the rotational speed and torque of the
motors as they respond to the circulating fluid. Although this latter control is continuous,
it is often labeled like a gear shift lever; that is, forward, neutral, and reverse. This lever
be called “velocity.” One characteristic of this system is that there is little slippage. If the
motors stop, there is no “coasting.” Because wheel skid is a disaster for a new road
surface on still molten tar, in a digital control system, the controller senses a new
position of the velocity setting and then gradually changes the machine's velocity to the
desired value by ramping up or down the response of the motors to the circulating fluid
over an appropriate time period.

In this particular case, the operator from company C needed to clean part of the
mechanism which could only be opened via the controller. The controller would open it
only when the machine was moving forward. There was a switch marked “park” on the
operator's console which blocked the signal from the control system to the motors. The
operator discovered that placing the velocity lever in a forward position with the throttle
set to a high RPM while activating the park switch allowed the controller to open the
device needed. In this state, the hydraulic fluid was circulating rapidly, but the motors
were insensitive to its flow. Coincidently, a mechanical drum brake was also set by the
system in response to the park switch.

After completing the cleaning operation, the operator placed the velocity lever in the
neutral position and released the parking brake by pressing the “park” switch as he
prepared to back up. To the surprise of everyone, the machine lurched forward and,
tragically, caused serious injury.

The problem was that when the parking brake was released, the control system was still
applying its signal to the wire leading to the motors and, although that signal was
interrupted by the parking switch, it was still being “ramped down.” Because of the short
time between repositioning the velocity lever and reapplying the signal to the motors,
the motors were almost instantaneously set to a high RPM response. The machine
leapt forward.

This was a rare, but instructive, instance of extreme division of responsibility in
development. Couching the description in terms of an elementary software life cycle
model, company M had an engineering staff with little experience in digital control. They
built a requirements document addressing issues such as steel strength and wheel
sizes, but they left design of the digital control of movement and functionalities to their
supplier of hydraulic systems, company H. In turn, company H designed the hydraulic
controls down to the control system level and passed this design on to programmer P
for implementation.

The root cause of the accident was the failure of the design to take into account the
parking brake switch. The fact that the interruption of the ramp down signal caused the
vehicle to move forward while in neutral was determined by digital control systems
consultants with whom the victim’s attorney had conferred. The question the attorney
posed to the authors was “Had the vehicle been tested sufficiently and should this

www.ijde.org 8

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

defect have been found during testing?” To attempt to answer this question, it was
necessary to begin at the source code level.

Our first request was for a copy of the source code to the control program and for
system diagrams. While the wiring diagrams of the machine were delivered by M, the
code was a different matter. An agreement over the ownership of the source code
between M and H delayed our access. The lawyers and the court seemed woefully
ignorant of the nature of our request. At first, unbeknownst to us, the attorneys agreed
to deliver a printed copy of the code. The one spot of humor in the situation arose when
the attorney advised us that the defendant's attorney had printed several reams of
paper containing illegible characters. Of course, they had been trying to print the
executable binary.

After more negotiation and the signing of nondisclosure agreements, the source code
was delivered on CD. This source code had source snapshots of versions both older
and newer than the installed version; the specific version of interest had been lost. The
authors were assured, and of necessity assumed, that there had been no changes to
the relevant portion. After a few days of analysis aided by standard Unix utilities such as
cflow, the critical section that provided the ramping of the signal to the motors was
identified. At this point, the culpable party appeared to be the programmer, and if we
had had to rely solely on evidence existing in digital form, this would have been the only
conclusion we could have reached.

However, following Nancy Leveson's dictum that safety considerations must be part of
the requirements phase of the development cycle and knowing that requirements are a
prerequisite to a test plan, we asked for the requirements documents that company M
had produced and which had directed H in their design. After defining such documents
to a specificity acceptable to the courts and the attorneys, we learned (to our complete
surprise) that no such documents existed. The only communication between M and H
had been a series of emails relating to minor details.

The next step was to request the design document delivered by H to the programmer P.
Two were received. The first, internal to H, was a standard control diagram indicating
the routing and conditioning of signals and referring only to the hydraulic components of
the machine. The second, which was shared with the programmer, consisted solely of
required voltage ranges and other values read from a test harness in response to a
variety of inputs into an evaluation board. In other words, the programmer had no idea
of the specifics of the application.

At this point, the programmer was exonerated, save for his lack of judgment in failing to
refuse a job with such weak direction.

The only parts of the development cycle left to investigate were the deployment and
testing portions. Documentation and training are significant parts of deployment. In the
documentation relating to the machine, the procedure followed by the operator is not

www.ijde.org 9

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

addressed. Training was to be supplied by the seller S, but was informal at best and did
not address safety issues.

Students learn that a requirement is valid only if it is testable and that a test plan is an
essential part of the specification writing process. So, testing related materials were
defined to the court and attorneys and requested from all parties. We received from H
and P a document specifying voltage and timing responses required when measured
from the hardware test harness. M supplied no testing documents other than ground
speed performance reports; H supplied only what was given to P.

When challenged, M claimed that their engineers had run the machine in their parking
lot. They also claimed that they had an organized field testing program in which initial
customers were compensated with discounts for evaluating the machine's performance
in the field. No specific example reports were forthcoming.

At this point, reading depositions from M's engineering staff led to another discovery.
The most pressing question was how the potentially disastrous interaction of the parking
switch and the velocity lever slipped by everyone. The simple fact was that the parking
switch was a holdover from an old analog design and M decided to add it as a safety
precaution against the velocity lever being accidentally bumped. Although immaterial to
the current discussion, M insisted that H had been informed of the modification while H
denied any knowledge of the switch. The official medium of communication would
normally have been the requirements document.

It should be clear from the description of the case that sound engineering principles
were overlooked at several stages of development. For the purposes of the lawsuit, the
authors had to describe what the industry standard practices that should have been
known by the defendants and that were not followed. Figure 1 depicts what was
considered to be the minimum set of such practices with respect to the specification and
testing of the product.

www.ijde.org 10

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

Figure 1. Minimum set of engineering practices for the case study

The first step in the development process should have been the formulation of a
detailed system specification for the overall product. Because the hydraulics system
was to be subcontracted to a third party, that portion of the system should have been
specified in terms of its overall requirements and its interface to other parts of the
system. The hydraulics subsystem specification would have represented a contract
between M and H and, as such, would have provided the conditions required to satisfy
that contract and would have manifested in the form of acceptance test criteria for the
hydraulics subsystem. The system specification would have been the input to an
overall system test plan. System integration testing would assemble all of the
subsystems, testing their interactions. Overall system tests would have been conducted

www.ijde.org 11

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

to verify the system’s conformance to the system’s specification, under both normal and
exceptional conditions. Field testing would have been the final stage, in which the final
product was fine tuned, based on feedback from actual use in the field. Given the
inherently potential dangers in such machinery, it was reasonable to expect sections of
both the requirements and the test plan to address safety.

For H, they would reasonably have been expected to design a hydraulics system that
conformed to the requirements provided by M. Because H intended to subcontract the
development of the control system software to run the hydraulics subsystem, a software
requirements specification for the control system would have been developed to serve
as the contract between H and P. As stated before, a part of this contract would
stipulate the acceptance testing criteria for the control system software. H would also
have been expected to develop a test plan for the hydraulic subsystem.

The programming company, P, would reasonably be expected to create a design based
on the specification provided by H. That design would be translated into a source code
implementation. That implementation would then be tested to ensure that each piece of
code worked as intended (unit test) and that the pieces of code worked correctly when
interacting with each other (integration test).

The root cause of the defect that led to the victim’s injury was the presence of the
parking brake switch of which H claimed to have had no knowledge. No documented
specification for any part of the system was ever produced. Such documentation would
necessarily have addressed the systems with which the hydraulics subsystem would
have to interoperate. The existence of the switch would then have been included in the
design of the hydraulic subsystem and referenced in the control system specification.
No software design was produced by the programmer, but had one been created from a
complete specification, it would have addressed interactions of the software with the
switch.

Once the software was constructed, it would have been tested according to
documented test plans, created using complete specification documents at each stage.
In the absence of specifications, all testing efforts were ad hoc and woefully inadequate.
The programmer had no test plan, no documented test cases, no record of any defects
found. The hydraulic subsystem was tested without a test plan and no acceptance
testing was documented for the code received from the programmer. No system test
plan was produced nor was hydraulic subsystem acceptance testing performed.
System testing consisted of driving the vehicle through a parking lot “obstacle course”
consisting of hills and curves in order to tune the vehicle so it operated more smoothly.
No testing was conducted for potential safety hazards or anomalous behaviors. Field
testing consisted of a crew observing the vehicle under normal use on a job site.

Several process failures occurred that let the initial oversight of the parking brake switch
go undetected. It was the authors’ expertise in software engineering that eventually
revealed where the real problem originated. However, the authors did not have the
background expertise in control systems that originally identified the interaction of the

www.ijde.org 12

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

signal ramp down with the parking brake switch. The lawyers involved did not have any
understanding of the software development process or other technical issues. Had
there been someone with background in each of these areas (not necessarily
expertise), it would have greatly facilitated the investigation into what really led to the
defective operation of the machine. For example, even with expertise in software
engineering, it was very difficult to describe technical documents in appropriate legal
terminology during the discovery process.

When the authors returned to the victim’s lawyer to answer his question as to whether
or not the system was tested adequately, the lawyer was initially disappointed with the
response that his question could not be answered. His mood changed, of course, when
the reason was revealed.

Clearly, none of the companies involved in the production of this large, powerful and
ultimately dangerous piece of equipment observed industry standard practices for the
engineering of machine control systems. While the root cause of the problem was
inadequate specification of the product at the highest level, the effects of the
specification oversight permeated the entire development process.

While the hydraulics system of the machine was computer controlled, it was software
that governed the computer controller. The authors, therefore, considered the
investigative work done to acquire evidence about this system to be an aspect of
“software forensics.” Table 1 provides four definitions acquired from the literature on
software forensics.

www.ijde.org 13

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

Table 1. Software Forensics Definitions

Term Definition
1. Software Forensics A. “Software Forensics is the area of Software Science aimed at authorship

analysis of computer source code. Over the past few years there has been a
renewed interest in the science of software authorship identification; this area of
research has been termed ‘Software Forensics ‘” (Sallis, Aakjaer, & MacDonell,
1996).

 B. “Source code is the textual form of a computer program that is written by a
computer programmer in a computer programming language. These
programming languages can in some respects be treated as a form of language
from a linguistic perspective, or more precisely as a series of languages of
particular types, but within some common family. In the same manner as written
text can be analyzed for evidence of authorship, …, computer programs can also
be examined from a forensics or linguistics viewpoint … for information regarding
the program’s authorship. … Similarly, techniques used in forensics for
handwriting and linguistic analysis can also, in some cases at least, be
transferred in some respect to what is referred to here as software forensics”
(Gray, Sallis, & MacDonell, 1998).

 C. “In this paper, we detail some of the features of code remnants that might be
analyzed and then used to identify their authors. We further outline some of the
difficulties involved in tracing an intruder by analyzing code. We conclude by
discussing some future work that needs to be done before this approach can be
properly evaluated. We refer to our process as software forensics, similar to
medical forensics: we are examining the remains to obtain evidence about the
factors involved” (Spafford & Weeber, 1992) .

 D. “Software forensics involves the analysis of evidence from program code
itself. Program code can be reviewed for evidence of activity, function, and
intention, as well as evidence of the software’s author” (Slade, 2004).

Each of the definitions for software forensics presented in Table 1 emphasizes the
determination of code authorship. Issues related to intellectual property law drove the
research projects that established this definition. While the definitions for software
engineering presented earlier in this paper evolved to include all documents related to
the development of software as part of the software product, the definitions of software
forensics address only the source code listing. As the real fault in the case study lies
with the other documents related to the engineering of this system, the state of the
practice in software forensics would not help us in this case. The author of the code
was a defendant and acknowledged his authorship.

A more commonly encountered term in the literature for this growing discipline is
“computer forensics.” Table 2 presents eight definitions obtained from a literature
survey of computer forensics. Definition 2A severely limits the applicability of computer
forensics to the case study. There was need to scour digital media for evidence.
Furthermore, this was not a criminal case. Definition 2B emphasizes analysis of data
after a computer crime. While this definition is broader than 2A, it still applies only to
criminal investigation and data recovery after a computer crime. Definition 2C removes
the constraint that computer forensics apply only to criminal investigation, but it still
focuses narrowly on examining the contents of a computer system (similar to 2A).
Definition 2D returns to computer crimes and begins to address issues of admissibility
for digital evidence. Definition 2E focuses only on digital data, while the artifacts

www.ijde.org 14

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

associated with the computer system in the case study were not digital themselves
(though they did bring about the development of a digital system). Definition 2F
addresses the fact that computer forensics is often focused on preservation of evidence
from a computer crime. 2G is another definition that focuses on examining computer
systems for evidence of criminal activity. Finally, definition 2H narrows computer
forensics to only criminal investigation and gathering of digital evidence.

None of these definitions addresses the problem faced in the case study. While hard
drives and other digital media could have been examined, nothing would have been
found that was not already available through disclosure. More evidence concerning the
specific version of the software that was running on the machine involved in the
accident might have been forthcoming, but that would not have done anything to
address the root cause of the problem or to determine which party was responsible.
Each of the definitions of computer forensics seems to over-emphasize criminal law,
analysis of evidence in digital form, and admissibility of digital evidence in court. Civil
cases or cases involving digital systems in which the actual evidence is not in digital
form are not addressed by these definitions. The case study clearly involved
computers, software, and issues of negligence, yet none of the definitions for computer
forensics addresses these issues.

www.ijde.org 15

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

Table 2. Computer Forensics Definitions

Term Definition
2. Computer Forensics A. “Computer forensics is the analysis of hard drives, CDs, floppy disks, Zip and

Jazz disks, flash memory cards, and other forms of storage media to uncover
evidence of crimes” (Garber, 2001).

 B. “Computer Forensics undertakes the post-mortem, or ‘after-the-event’ analysis
of computer crime. Of particular importance is the requirement to successfully
narrow the potentially large search space often presented to investigators of such
crimes. This usually involves some form(s) of guided processing of the data
collected as evidence in order to produce a shortlist of suspicious activities.
Investigators can subsequently use this shortlist to examine related evidence in
more detail” (Abraham & de Vel, 2002).

 C. “Computer forensics is the process of conducting an examination into the
contents of the data on a computer system using state of the art techniques to
determine if evidence exists that can aid in internal or legal investigations.
Forensic specialists use a wide array of methods to discover data and recover
deleted, encrypted, and damaged files” (Digital Forensics of Texas, 2005).

 D. “The investigation of computer crime, including the collection, analysis and
presentation in court of electronic evidence. Also called: Cyberforensics,
Forensics, Security Forensics, Digital Forensics, and Forensic Analysis” (Bitpipe,
2005).

 E. “People, processes, tools and measures to gather, analyze and interpret digital
data to support or refute certain allegations of misuse involving digital systems”
(Cybex, 2005).

 F. “Computer forensics is commonly described as the study of evidence derived
from computers. However, the literature on the topic concentrates primarily on the
recovery and preservation for presentation as evidence, of data from computers
that may have been used in the commission of some criminal activity. In fact,
most books on the subject focus on the preservation aspects, fastening on
documentation of the chain of evidence, and almost ignoring the technical aspects
of the field” (Slade, 2004).

 G. “The term computer forensics has many synonyms and contexts. It originated
in the late 1980s with early law enforcement practitioners who used it to refer to
examining standalone computers for digital evidence of crime. (Some prefer to call
this aspect of computer forensics media analysis.) “ (Yasinsac, Erbacher, Marks,
Pollitt, & Sommer, 2003).

 H. “Computer forensics, is the application of scientifically proven methods to
gather, process, interpret, and to use digital evidence to provide a conclusive
description of cyber crime activities. Cyber forensics also includes the act of
making digital data suitable for inclusion into a criminal investigation. Today cyber
forensics is a term used in conjunction with law enforcement, and is offered as
courses at many colleges and universities worldwide” (ISP Webopedia, 2005).

The terms “digital forensics” and “digital evidence” are both broader terms in that they
do not imply any specific issues of computer hardware of software authorship.
However, the definition for digital evidence in Table 3 limits the definition to evidence
stored in binary form and alludes to digital evidence only being applicable in criminal
cases.

www.ijde.org 16

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

Table 3. Digital Evidence Definition

Term Definition

3. Digital Evidence A. “Digital evidence is any information of probative value that is either stored or
transmitted in a binary form (SWGDE 1998). This field includes not only
computers in the traditional sense but also includes digital audio and video. It
includes all facets of crime where evidence may be found in a digital form”
(National Center for Forensics Science, 2005).

The definition for digital forensics is broader. As presented in Table 4, the definition of
digital forensics covers both evidentiary and root cause analysis. Root cause analysis
is very much what was needed in the case study. The definition does not tie digital
forensics solely to criminal cases.

Table 4. Digital forensics definition

Term Definition
4. Digital Forensics A. “Preservation, identification, extraction, documentation, and interpretation of

computer media for evidentiary and/or root cause analysis” (Kruse & Heiser,
2002).

The definition of “Forensic Engineering” comes the closest to addressing what we had
to do in the case study. While this definition addresses the need to investigate failures
and to address the process by which computer systems are built, it does not address
the other established areas of digital forensics. The discipline still needs people expert
in recovering data from hard drives and determining code authorship. Therefore, while
the definition in Table 5 is the closest to addressing the issues presented in the case
study, it fails to cover the breadth of the discipline.

Table 5. Forensic Engineering Definition

Term Definition
5. Forensic
Engineering

A. “Forensic systems engineering is the discipline investigating the history of
Information Technology failures. It therefore focuses on the post-mortem analysis
and study of project disasters. The work involves a detailed investigation of the
project, the environment, decisions taken, politics, human errors and the
relationship between subsystems. The work draws upon a multidisciplinary body
of knowledge and assesses the project from several directions and viewpoints.
The concept of systems is a central tool for understanding the delicate
relationships and their implications in the overall project environment” (Dalcher,
2001).

From the definitions acquired from the literature in the field of digital forensics, it would
seem clear that each definition evolved from trying to solve a very specific problem.
Most of these problems have either related to issues of chain of custody and
admissibility of digital evidence in criminal courts or to issues of intellectual property.
Only the definition of Forensic Engineering addresses the use of forensic techniques to
investigate technology failures.

www.ijde.org 17

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

Section V Conclusion

In the case discussed, the authors were struck repeatedly by the lack of the most basic
mutual understanding of the fields of the practitioners involved. The lawyers struggled
with simple concepts such as a requirements document. The authors wasted time on
pursuits that were not feasible because of legal naiveté. The participation of any party
with rudimentary knowledge of both legal procedure and software engineering would
have facilitated the investigation significantly. But, other than ad hoc knowledge gained
from experience and self-directed surveys of published materials, the authors found no
source for acquiring the appropriate range of skills. However, the authors’ newly
acquired experience may be more broadly applicable than this particular case. As
outsourcing of parts of the development process becomes increasingly common, similar
investigations to identify root causes of system failures and determine responsibility
may proliferate.

This case easily could have taken quite different paths with only minor changes in
circumstances. For example, the victim might not have been standing where he was
and the unexpected motion could have been reported as a serious hazard. An
investigation may have resulted that was very similar to the one that occurred, but the
focus might have been on identifying which of the companies involved would be
responsible for fixing the problem and improving the processes that led to the fault. In
this case, there may well have been no legal issues raised. At the other extreme, the
operator may have been charged with a criminal offense based on negligence. The
rules of investigation and evidence would have changed tremendously. The authors'
expertise in software engineering and embedded systems would have still been brought
to bear; however, the contexts would have varied greatly. If a similar case were
presented in a criminal law context, the authors would likely find little of their experience
peripheral to computing in the case studied to be of use.

More generally, the skills of many practitioners that intuitively would fall under the
umbrella of ISE do not clearly relate to any subfield currently defined. For example, ISE
would benefit greatly from inclusion of members of the Association of Certified Fraud
Examiners (ACFE) with their insights into such matters as money laundering via
networks and their interrogation skills. Psychologists and sociologists might provide
insights into motives underlying computer crime.

An argument has been made and a supporting case study presented to call for the
broadening of current definitions or agreement on a new definition to accommodate the
full range of skills needed for a practitioner to understand and direct investigations
having computing aspects, to categorize problems, to prescribe appropriate techniques,
and to identify and effectively employ experts. Such a broader definition should be
inclusive of relevant methodologies from the areas of the law, criminal justice, forensic
accounting, computer science, computer engineering, software engineering,
psychology, sociology, and other cognate areas and the definition should provide a
forum for collaborative research.

www.ijde.org 18

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

© Copyright 2005 International Journal of Digital Evidence

About the Authors

Gregory A. Hall is an assistant professor at Texas State University-San Marcos. His
areas of research include digital forensics, software engineering, software
measurement, and software testing. His home page is accessible at
http://www.cs.txstate.edu/~gh10 and his electronic mail address is gh10@txstate.edu.

Wilbon P. Davis is a Professor of Computer Science at Texas State University in San
Marcos, Texas. He has taught computing for 35 years, has served as a consultant in
industry in several roles, and has published in a range of areas. His main academic
interests lie in software engineering and graphics. His electronic mail address is
wd@cs.txstate.edu.

References

Abraham, T., & de Vel, O. (2002). Investigative Profiling with Computer Forensics Log

Data and Association Rules. Proceedings of the 2002 IEEE International
Conference on Data Mining.

American Heritage Dictionary of the English Language (4th ed.). (2000). New York, NY:

Houghton Mifflin.

Bauer, F. (1972). Software Engineering. Information Processing, 71.

Bitpipe (2005). Retrieved from http://www.bitpipe.com/tlist/Network-Forensics.html

Boehm, B. (1976). Software Engineering. IEEE Transactions on Computers, C-25.

Caloyannides, M. (2001). Computer Forensics and Privacy. Artech House, Inc.

Ciardhuáin, S. (2004). An Extended Model of Cybercrime Investigations. International

Journal of Digital Evidence, 3(1).

Cybex (2005). Retrieved from http://www.terena.nl/tech/task-forces/tf-

csirt/meeting11/CYBEX-Bevilacqua.pdf

Dalcher, D. (2001). Forensics ECBS: The Way Forward, Proceedings of the Eighth

Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems.

Digital Forensics of Texas, Inc. (2005). Retrieved from

http://home.swbell.net/txkidd/forensics.html

www.ijde.org 19

International Journal of Digital Evidence Spring 2005, Volume 4, Issue 1

Garber, L. (2001). Computer Forensics: High-Tech Law Enforcement. IEEE Computer,

January 2001.

Gray, A., Sallis, P., & MacDonell, S. (1998). IDENTIFIED (Integrated Dictionary-based

Extraction of Non-language Dependent Token Information for Forensics
Identification, Examination and Discrimination): A Dictionary-based System for
Extracting Source Code Metrics for Software Forensics. Paper submitted to
Software Engineering: Education & Practice.

ISP Webopedia (2005). Retrieved from

http://isp.webopedia.com/TERM/C/cyber_forensics.html

Kruse, W., & Heiser, J. (2002). Computer Forensics: Incident Response Essentials,

Addison-Wesley.

National Center for Forensics Science (2005). Retrieved from

http://www.ncfs.org/home.html

Sallis, P., Aakjaer, A., & MacDonell, S. (1996). Software Forensics: Old Methods for a

New Science. Proceedings of the 1996 International Conference on Software
Engineering: Education and Practice.

Slade, R. (2004). Software Forensics: Collecting Evidence from the Scene of a Digital

Crime, New York: McGraw Hill, pp. 2 - 5.

Spafford, E., & Weeber, S. (1992). Software Forensics: Can We Track Code to its

Authors? Purdue Technical Report CSD-TR92-010, 19 February 1992.

Stephenson, P. (2003). Modeling of Post-Incident Root Cause Analysis. International

Journal of Digital Evidence, 2(2).

Stephenson, P. (2004). The Application of Formal Methods to Root Cause Analysis of

Digital Incidents. International Journal of Digital Evidence, 3(1).

Yasinsac, A., Erbacher, R., Marks, D., Pollitt, M., & Sommer, P. (2003). Computer

Forensics Education, IEEE Security & Privacy, July/August 2003.

www.ijde.org 20

