
International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

Defining Digital Forensic Examination and Analysis Tools Using
Abstraction Layers

Brian Carrier

Research Scientist
@stake

Abstract

This paper uses the theory of abstraction layers to describe the purpose and goals
of digital forensic analysis tools. Using abstraction layers, we identify where
tools can introduce errors and provide requirements that the tools must follow.
Categories of forensic analysis types are also defined based on the abstraction
layers. Abstraction layers are not a new concept, but their usage in digital
forensic analysis is not well documented.

1 Introduction

What does it mean to be a Digital Forensic Analysis Tool? How do we categorize the
different types of analysis tools? For example, an investigator can view the files and
directories of a suspect system by using either specialized forensic software or by using
the operating system (OS) of an analysis system and viewing the files by mounting the
drive. Both methods allow the investigator to view evidence in allocated files, but only
the specialized forensic software allows him to easily view unallocated files. Additional
tools are required if he is relying on the OS. Clearly both allow the investigator to find
evidence and therefore should be considered forensic tools, but it is unclear how we
should compare and categorize them.

The high-level process of digital forensics includes the acquisition of data from a source,
analysis of the data and extraction of evidence, and preservation and presentation of the
evidence. Previous work has been done on the theory and requirements of data
acquisition [7] and the preservation of evidence [4]. This paper addresses the tools that
are used for the analysis of data and extraction of evidence.

This paper examines the nature of tools in digital forensics and proposes definitions and
requirements. Current digital forensic tools produce results that have been successfully
used in prosecutions, but lack designs that were created with forensic science needs. They
provide the investigator with access to evidence, but typically do not provide access to
methods for verifying that the evidence is reliable. This is necessary when approaching
digital forensics from a scientific point of view and could be a legal requirement in the
future.

The core concept of this paper is the basic notion of abstraction layers. Abstraction
layers exist in all forms of digital data and therefore in the tools used to analyze them.
The idea of using tools for layers of abstraction is not new, but a discussion of the
definitions, properties, and error types of abstraction layers when used with digital

www.ijde.org 1

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

forensics has not occurred. The concepts proposed here are applicable to any digital
forensic analysis type, which are defined later in the paper.

This paper begins with definitions regarding digital forensic analysis tools, followed by a
discussion of abstraction layers. The abstraction layer properties are used to define
analysis types and propose requirements for digital forensic analysis tools. Finally an
example of how the FAT file system uses abstraction layers is given. This paper is an
expanded version of the paper presented at the Digital Forensic Research Workshop II
[1].

2 Definitions
The Digital Forensics Research Workshop I defined Digital Forensic Science as [8]:

The use of scientifically derived and proven methods toward the preservation,
collection, validation, identification, analysis, interpretation, documentation and
presentation of digital evidence derived from digital sources for the purpose of
facilitating or furthering the reconstruction of events found to be criminal, or
helping to anticipate unauthorized actions shown to be disruptive to planned
operations.

This definition covers the broad aspects of digital forensics from data acquisition to legal
actions. This paper is limited in scope to the phases of identification and analysis. These
phases come after the collection and validation phases, which acquire data from the
suspect system. The identification and analysis phases examine the acquired data to
identify evidence. Using the broad definition from DFRWS, one can define the goal of
the identification and analysis phases of digital forensics as:

To identify digital evidence using scientifically derived and proven methods that
can be used to facilitate or further the reconstruction of events in an investigation.

As with any investigation, to find the truth one must identify data that:

Verifies existing data and theories (Inculpatory Evidence) �

� Contradicts existing data and theories (Exculpatory Evidence)

To find both evidence types, all acquired data must be analyzed and identified.
Analyzing every bit of data is a daunting task when confronted with the increasing size of
storage systems. Furthermore, the acquired data is typically only a series of byte values
from the hard disk or network wire. Raw data like this are typically difficult to
understand. In cases of multi-disk systems, such as RAID and Volume Management,
acquired data from a single disk cannot be analyzed unless they are merged with the data
from other disks using complex algorithms.

The Complexity Problem in digital forensics is that acquired data are typically at the
lowest and most raw format, which is often too difficult for humans to understand. It is
not necessarily impossible, but often the skill required to do so is great, and it is not
efficient to require every forensic analyst to be able to do so.

To solve the Complexity Problem, tools are used to translate data through one or more
layers of abstraction until it can be understood. For example, to view the contents of a
directory from a file system image, tools process the file system structures so that the
appropriate values are displayed. The data that represents the files in a directory exist in
formats that are too low-level to identify without the assistance of tools. The directory is

www.ijde.org 2

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

a layer of abstraction in the file system. Examples of non-file system layers of
abstraction include:

ASCII �

�

�

�

�

�

�

�

�

HTML Files

Windows Registry

Network Packets

Source Code

Similarly, the Quantity Problem in Digital Forensics is that the amount of data to analyze
can be very large. It is inefficient to analyze every single piece of it. Data reduction
techniques are used to solve this, by grouping data into one larger event or by removing
known data. Data reduction techniques are examples of abstraction layers, for example:

Identifying known network packets using Intrusion Detection System (IDS)
signatures

Identifying unknown entries during log processing

Identifying known files using hash databases

Sorting files by their type

This paper is concerned with analysis tools that translate data from one layer of
abstraction to another. It is proposed that the purpose of digital forensic analysis tools is
to accurately present all data at a layer of abstraction and format that can be effectively
used by an investigator to identify evidence. The needed layer of abstraction is
dependent on the skill level of the investigator and the investigation requirements. For
example, in some cases viewing the raw contents of a disk block is appropriate whereas
other cases will require the disk block to be processed as a file system structure. Tools
must exist to provide both options. The next section will cover abstraction layer
properties with respect to digital forensics in more detail.

3 Layers Of Abstraction
Layers of abstraction are used to analyze large amounts of data in a more manageable
format. They are a necessary feature in the design of modern digital systems because all
data, regardless of application, are represented on a disk or network in a generic format,
bits that are set to one or zero. To use this generic storage format for custom
applications, the bits are translated by the applications to a structure that meets its needs.
The custom format is a layer of abstraction.

A basic abstraction example is ASCII. Every letter of the US English alphabet is
assigned to a number between 32 and 127. When a text file is saved, the letters are
translated to their numerical representation and the value is saved on the media as bits.
Viewing the file raw shows a series of ones and zeros. By applying the ASCII layer of
abstraction, the numerical values are mapped to their corresponding characters and the
file is displayed as a series of letters, numbers, and symbols. A text editor is an example
of a tool operating at this layer of abstraction.

www.ijde.org 3

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

Each abstraction layer can be described as a function of inputs and outputs. The layer
inputs are data and a translation rule set. The rule set describes how the input data should
be processed, and in many cases is a design specification of the object. The outputs of
each layer are the data derived from the input data and a margin of error. In the ASCII
example, the inputs are the binary data and the ASCII mapping rule set. The output is the
alphanumeric representation.

Each abstraction layer can be described as a function of inputs and outputs. The layer
inputs are data and a translation rule set. The rule set describes how the input data should
be processed, and in many cases is a design specification of the object. The outputs of
each layer are the data derived from the input data and a margin of error. In the ASCII
example, the inputs are the binary data and the ASCII mapping rule set. The output is the
alphanumeric representation.

Figure 1: Abstraction Layer Inputs and Outputs

Margin of Error

Output Data

Rule Set

Input Data Abstraction
Layer

The output data of a layer can be fed as input to another layer, as either the actual data to
be translated or as descriptive meta-data that is used to translate other input data. In the
ASCII example, if the file was an HTML document then the output of the first layer, the
characters, would be used as the input data to the HTML layer of abstraction. This layer
takes the ASCII data and the HTML specification as input and outputs a formatted
document. An HTML browser is an example of a tool that translates this, and typically
the previous, layer.

The output data of a layer can be fed as input to another layer, as either the actual data to
be translated or as descriptive meta-data that is used to translate other input data. In the
ASCII example, if the file was an HTML document then the output of the first layer, the
characters, would be used as the input data to the HTML layer of abstraction. This layer
takes the ASCII data and the HTML specification as input and outputs a formatted
document. An HTML browser is an example of a tool that translates this, and typically
the previous, layer.

An example of descriptive meta-data as output is the block pointer and type fields in a
UNIX file system inode structure. The inode structure describes a file and includes a
descriptor that indicates if the inode is for a file, directory, or some other special type.
Another inode field is the direct block pointer that contains an address of where the file
content is stored. Both values are used as descriptive data when processing the next layer
of abstraction in the file system. The address is used to identify where to read data from
in the file system and the type value is used to identify how to process it, since a directory
is processed differently than a file. In this case, the output of the inode layer is not the
only input to the next layer because the entire file system image is needed to locate the
block address.

An example of descriptive meta-data as output is the block pointer and type fields in a
UNIX file system inode structure. The inode structure describes a file and includes a
descriptor that indicates if the inode is for a file, directory, or some other special type.
Another inode field is the direct block pointer that contains an address of where the file
content is stored. Both values are used as descriptive data when processing the next layer
of abstraction in the file system. The address is used to identify where to read data from
in the file system and the type value is used to identify how to process it, since a directory
is processed differently than a file. In this case, the output of the inode layer is not the
only input to the next layer because the entire file system image is needed to locate the
block address.

Abstraction layers occur in multiple levels. The file system itself is a layer of abstraction
for the stream of bytes from the disk media. Within the file system are additional layers
of abstraction and the end result is a smaller stream of bytes that represents a file, which
is then applied to an application level of abstraction and it is processed further. Multiple
levels of abstraction layers are discussed further in Section 3.2.

Abstraction layers occur in multiple levels. The file system itself is a layer of abstraction
for the stream of bytes from the disk media. Within the file system are additional layers
of abstraction and the end result is a smaller stream of bytes that represents a file, which
is then applied to an application level of abstraction and it is processed further. Multiple
levels of abstraction layers are discussed further in Section 3.2.

3.1 Abstraction Layer Errors 3.1 Abstraction Layer Errors
Each layer of abstraction can introduce errors and therefore a margin of error was
identified as an output value. The errors discussed in this paper are not a comprehensive
list of errors that exist during the investigation process. They are only the ones that exist
because of analysis tools and the process of using layers of abstractions. Errors
introduced from the attacker covering his tracks, from faulty imaging tools, or from an

Each layer of abstraction can introduce errors and therefore a margin of error was
identified as an output value. The errors discussed in this paper are not a comprehensive
list of errors that exist during the investigation process. They are only the ones that exist
because of analysis tools and the process of using layers of abstractions. Errors
introduced from the attacker covering his tracks, from faulty imaging tools, or from an

www.ijde.org 4

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

investigator misinterpreting the results of a tool are not covered here, but are elsewhere
[2].

Abstraction layers can introduce two forms of errors: Tool Implementation Error and
Abstraction Error. Tool Implementation Error is introduced because of programming and
tool design errors. Examples of this include programming flaws, errors because the tool
uses an incorrect specification, and errors because the tool uses the correct specification
but the original application did not. This error is the most difficult to calculate because it
requires extensive testing and code review. Efforts by the NIST Computer Forensics Tool
Testing Group [6] can help reduce this type of error. Ideally, one can assume that if a
fault (or bug) has been detected, it will be fixed and a new version of the tool will be
released. Therefore, an investigator can keep this value minimal by keeping up to date on
tool fixes.

To help identify the risk of unknown faults, a Tool Implementation Error could be
calculated for each tool. The calculation would be based on the number of faults found in
recent years and the severity of each. As it would be in a vendor’s best interest to have
this value as small as possible, it could be difficult to calculate with closed source
applications because faults that are not publicized could be quietly fixed and not added to
the calculation.

The second type of error is the Abstraction Error, which is introduced because of
simplifications used to generate the layer of abstraction. This type of error occurs when a
layer of abstraction is not part of the original design. For example, a file system image
has several layers of abstraction in its design. Going from one layer to another would
introduce no Abstraction Error. Alternatively, an Abstraction Error would exist in an
IDS system that reduced multiple network packets into a specific attack. As the IDS did
not know with 100% certainty that the packets were part of an attack, it introduced a
margin of error. The error value for an IDS would be different for the different attacks
that it was trying to detect. This error value could be improved with research and better
abstraction techniques.

Using these, we can define the Abstraction Layer Error Problem as the errors that are
introduced by the layers of abstraction. Calculating a margin of error for each layer and
taking it into account while analyzing the resulting data could solve this problem. To
help mitigate the risk associated with this problem, one needs access to the layer inputs,
rule set, and outputs to verify the translation.

3.2 Abstraction Layer Characteristics
Not all layers of abstraction or tools are the same. This section will provide four
characteristics that can be used to describe a layer and the tools that process them.

Abstraction Error can be used to describe a layer by identifying it as a Lossy Layer or a
Lossless Layer. A Lossy Layer is one that has a greater than zero margin of Abstraction
Error associated with it. A Lossless Layer is one that has zero margin of Abstraction
Error. Tool Implementation Error is not included in these definitions because it is a tool,
not layer, specific value. File system abstraction layers and ASCII are examples of
Lossless Layers, whereas IDS alerts are an example of a Lossy Layer.

www.ijde.org 5

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

A layer can also be described by its mapping attributes. A one-to-one layer has a unique
mapping so that there is a one-to-one correlation between any input and output. The
ASCII example and many layers of a file system fall into this category. The input of
these layers can be determined given the output and rule set. A multi-to-one layer has a
non-unique mapping where an output can be generated by multiple input values. The
MD5 hash is an example of this. Two inputs can generate the same MD5 checksum
value, although it is difficult to find them. Another example of multi-to-one is with IDS
alerts. One can generally not recreate the entire packet sequence that generated an alert.

A layer can also be described by its mapping attributes. A one-to-one layer has a unique
mapping so that there is a one-to-one correlation between any input and output. The
ASCII example and many layers of a file system fall into this category. The input of
these layers can be determined given the output and rule set. A multi-to-one layer has a
non-unique mapping where an output can be generated by multiple input values. The
MD5 hash is an example of this. Two inputs can generate the same MD5 checksum
value, although it is difficult to find them. Another example of multi-to-one is with IDS
alerts. One can generally not recreate the entire packet sequence that generated an alert.

There can be layers of abstraction within a higher-level layer of abstraction. In the case
of disk storage, there are at least four high-level layers of abstraction. The first is the
physical media layer, which translates the unique on-disk format to the general format of
sectors and LBA and CHS addressing that the hardware interface provides. The second
layer is the media management layer that translates the entire disk to smaller partitions.
The third layer is the file system layer that translates the partition contents to files. The
fourth layer is the application layer that translates the file content to the needs of an
application.

There can be layers of abstraction within a higher-level layer of abstraction. In the case
of disk storage, there are at least four high-level layers of abstraction. The first is the
physical media layer, which translates the unique on-disk format to the general format of
sectors and LBA and CHS addressing that the hardware interface provides. The second
layer is the media management layer that translates the entire disk to smaller partitions.
The third layer is the file system layer that translates the partition contents to files. The
fourth layer is the application layer that translates the file content to the needs of an
application.

The last layer in a level of abstraction is called the Boundary Layer. The output of this
layer is not used as input to any other layers in that level. For example, the raw content
of a file is a Boundary Layer in the file system level. The translation to ASCII and
HTML is done in the application layer level. An example using an HTML file can be
found for all four levels in Figure 2.

The last layer in a level of abstraction is called the Boundary Layer. The output of this
layer is not used as input to any other layers in that level. For example, the raw content
of a file is a Boundary Layer in the file system level. The translation to ASCII and
HTML is done in the application layer level. An example using an HTML file can be
found for all four levels in Figure 2.

Figure 2: Abstraction Levels and Layers of an HTML File

HTML

ASCII File

…

Data
Area

FAT Boot
Sector

Partition

Partition Table Sectors

Etc. Cyl Head

Physical Media Application File System Media
Management

The tools for each layer can fall into different categories as well. A Translation Tool is
one that uses a translation rule set and input data to generate output data. The purpose of
this tool is to translate the data to the next layer of abstraction. A Presentation Tool is
one that takes the data from the Translation Tool and displays it in a way that is useful to
the investigator. From the investigator’s point of view, these tools need not be separate

The tools for each layer can fall into different categories as well. A Translation Tool is
one that uses a translation rule set and input data to generate output data. The purpose of
this tool is to translate the data to the next layer of abstraction. A Presentation Tool is
one that takes the data from the Translation Tool and displays it in a way that is useful to
the investigator. From the investigator’s point of view, these tools need not be separate

www.ijde.org 6

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

and are not in many current tools. Layers that produce a large amount of output data may
separate the tools for efficiency.

As an example, a Translation Tool could analyze a file system image and display the file
and directory listings in the order that they existed in the image. One presentation tool
could take that data and sort it by directory to display just the files within a given
directory, similar to the output of ‘ls’ or ‘dir’ in UNIX or Windows. A second
presentation tool could sort the entries by the Modified, Access, and Changed (MAC)
times of each file and display a timeline of file activity. The same data exists in each
result, but in a format that achieves different needs.

4 Analysis Categories
The major categories of digital forensics can be defined using the notion of abstraction
layers. The ones given here differ from those previously defined, such as [8]. Previous
attempts at defining categories appear to rely more on the needed skill sets of an
investigator.

Physical Media Analysis: The analysis of the physical media layer of abstraction,
which translates a custom storage layout and contents to a standard interface, IDE
or SCSI for example. The boundary layer is the bytes of the media. Examples
include a hard disk, compact flash, and memory chips. The analysis of this layer
includes processing the custom layout and even recovering deleted data after it
has been overwritten, [3] for example.

Media Management Analysis: The analysis of the media management layer of
abstraction, which organizes storage media. The boundary layer is another
collection of bytes from the media. Examples of this layer include dividing a
hard disk into partitions, organizing multiple disks into a volume, and integrating
multiple memory chips into memory space. This layer may not exist in all types
of media, for example a database may access an entire hard disk and not create
partitions.

File System Analysis: The analysis of the file system layer of abstraction, which
translates the bytes and sectors of the partition to directories and files. The
boundary layer is file content. The analysis in this layer includes viewing
directory and file contents and recovering deleted files.

Application Analysis: The analysis of the application layer of abstraction, which
translates data, typically returned from the file system, into the custom format
needed by the application. Analysis in this layer includes viewing log files,
configuration files, images, documents and reverse engineering executables. The
input data will typically come from the file system, but applications such as
databases may read directly from the disk.

Network Analysis: The analysis of the network layer of abstraction, which
translates the lowest level data from a physical network or wireless network to the
data that is used by an application. Analysis in this layer includes analyzing
network packets and IDS alerts. Analysis of logs generated by network services,
a firewall or web server for example, falls under Application Analysis.

www.ijde.org 7

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

Memory Analysis: The analysis of the memory layer of abstraction, which
translates the bytes of the memory media to processes and system data. Analysis
in this area includes identifying the code that a process was running and
extracting sensitive data that was not stored elsewhere.

5 Analysis Tool Requirements
Using the previously stated definitions and goals, a list of tool requirements can be
generated.

Usability: To solve the Complexity Problem (data at its lowest format is too
difficult to analyze) tools must provide data at a layer of abstraction and format
that helps the investigator. At a minimum, the investigator must have access to
the layers of abstraction that are defined as Boundary Layers. The tool should
also present the data in a clear and accurate format so that the investigator does
not interpret the data incorrectly.

Comprehensive: To identify both Inculpatory and Exculpatory Evidence, the
investigator must have access to all output data at the given layer of abstraction.

Accuracy: To solve the Error Problem (layers of abstraction introduce errors into
the final product) tools must ensure that the output data is accurate and a margin
of error is calculated so that the results can be interpreted appropriately.

Deterministic: To ensure the accuracy of a tool, it must always produce the same
output when given a translation rule set and input.

Verifiable: To ensure the accuracy of a tool, one needs to be able to verify the
results. This can be done manually or by using a second and independent tool set.
Therefore, one needs access to the inputs and outputs of each layer so that the
output can be verified.

In addition to the required attributes, the following are proposed as recommended
features.

Read-Only: While not a necessity, this is obviously a highly recommended
feature. As the nature of digital media allows one to easily make exact copies of
data, copies can be made prior to using a tool that modifies the original. To verify
the result, which is a requirement, a copy of the input is needed.

Sanity Checks: All data values can be used as input to an abstraction layer, but
only some outputs will be valid. Therefore, the investigator should be able to
distinguish between valid and invalid outputs. To assist investigators,
Presentation Tools should conduct sanity checks on the output and indicate if it is
valid.

6 Fat File System Example
To illustrate the above, an example will be given using the FAT file system, one of the
most basic file systems that is still used in many computers. This example will first give
a brief overview of the file system layout, describe the proposed layers of abstraction, and
provide an example of listing the root directory contents. FAT32 is specifically used
because it is simpler than FAT12 and FAT16 in the way that it stores the Root Directory.

www.ijde.org 8

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

6.1 FAT Design
This section provides a brief review of the FAT file system layout. For a more complete
discussion refer to [5].

The FAT file system is broken up into main three areas. The first area is the Boot Sector
that contains the addresses and sizes of structures in this specific file system. The next
two areas are the File Allocation Tables (FAT) and the Data Area. The locations of
which are identified in the Boot Sector. The Data Area is divided into consecutive
sectors called clusters. Clusters store the contents of a file or directory. Each cluster has
an entry in the FAT that specifies if the cluster is unallocated or which cluster is the next
in the file that has allocated it.

Files are described by a directory entry structure. The directory entry structures are
stored in the clusters allocated to the parent directory. The structure contains the file
name, times, size, and starting cluster. The remaining clusters in the file, if any, are
identified using the FAT.

6.2 FAT Abstraction Layers
All layers in this example will use the FAT32 specification as the input rule set. The
FAT file system has seven layers of abstraction. The first layer uses just the partition
image as input, assuming that the acquisition was done of the raw partition using a tool
such as the UNIX ‘dd’ tool. This layer uses the defined Boot Sector structure and
extracts out the size and location values. Examples of extracted values include:

Starting location of FAT �

�

�

�

�

Size of each FAT

Number of FATs

Number of sectors per cluster

Location of Root Directory

The second layer takes the image and information about the File Allocation Table (FAT)
as input and gives the FAT and Data Area as output. The output of this layer is raw data
from the image and is not structured.

The next two layers give structure to the FAT and Data Areas identified in the previous
layer. One layer takes the FAT Area and FAT entry size as input and provides the table
entries as output. The other layer takes the Data Area and cluster size as input and
provides the clusters as output.

File and directory contents are stored in clusters in the Data Area. The fifth layer of
abstraction in the File System Level takes a cluster and a type value as input. If the type
is for a file then the raw cluster content is given as output. If the type is for a directory
then a list of directory entries are given as output. If the raw content is given, then this is
a Boundary Layer because there is nothing else that can be processed by the file system
layers. The data would be passed to the application level.

If directory entries were given in the previous layer, then we have a partial description of
a file or directory as we only have the first cluster in the file and not the rest. The sixth

www.ijde.org 9

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

layer takes the starting cluster and the FAT as input and generates the full list of allocated
clusters as output.

The seventh layer takes the clusters, the directory entry, and the full list of clusters as
input and generates either the entire file contents or a directory listing. This layer uses
the fifth layer, which was previously described. Therefore, this layer is a Boundary
Layer if a file is being analyzed. The layers are shown in table form in Table 1.

Table 1: Abstraction Layers of the FAT File System

Layer Input Output

1 Raw file system image Boot Sector values

2 File system image and values
from Boot Sector (layer 1)

FAT and Data Area

3 FAT Area (layer 2), FAT
Entry Size (layer 1)

FAT Entries

4 Data Area (layer 2), Cluster
Size (layer 1)

Clusters

5 Raw Cluster Content (layer
4), Content Type

Formatted cluster content
(Directory Entries if directory type
and Raw Content if file type)

6 Starting Cluster, FAT Entries
(layer 3)

List of Clusters in a run

7 List of Clusters (layer 6),
Clusters (layer 4), Formatted
Cluster Content (layer 5),
Type

All Directory Entries in a directory
or all raw content of a file

A digital forensics analysis tool that was designed for the FAT file system with the
requirements previously listed would provide the investigator with the inputs and outputs
to each of the seven layers of abstraction. It would also present the output of each layer
in one or more formats.

6.3 Directory Entry Listing Example
An analysis tool that allowed one to list the contents of the FAT32 root directory would
do the following with an image:

1. Process Layer 1 to identify the Boot Sector values (including the location of the
root directory).

2. Process Layer 2 to identify the FAT and Data Areas.

3. Process Layer 3 to extract the FAT entries from the FAT area.

4. Process Layer 4 to extract the clusters from the Data Area.

www.ijde.org 10

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

5. Use the location of the root directory to process Layer 6 to identify all allocated
clusters in the root directory.

6. Process Layer 7 to get the listing of all names in the directory. The formatting
tool in this case would display either all file details or just the names.

The tool would provide access to the outputs of each step above so that results could be
easily verified.

7 Conclusion
This paper has examined the role of tools during a digital forensic analysis and has
documented the use of abstraction layers. The use of abstraction layers is not a new idea,
but little has been written about it. This paper proposes definitions and error types
associated with abstraction layers so that they can be refined and expanded upon by the
digital forensics community.

Abstraction layers are used in all modern digital systems. Therefore, digital forensics
analysis tools are needed to translate them and provide an error value that will help
determine how trustworthy the result is. No software is perfect and therefore each
analysis tool will have an associated Tool Implementation Error based on its history. This
value will help to establish trust when using an analysis tool.

The existence of lossy abstraction layers is likely to increase as investigators use data
reduction techniques to manage the increasing number of logs, network packets, and
files. These layers will introduce errors into the final result and therefore must be clearly
understood and documented. As the field of digital forensics matures, a common
language must be developed to discuss the tools and techniques that we use.

8 Acknowledgments
Prof. Gene Spafford provided helpful comments and feedback on this version of the
paper.

References
[1] Brian Carrier, Defining Digital Forensic Examination and Analysis Tools. In Digital

Research Workshop II, 2002. Available at: http://www.dfrws.org.

[2] Eoghan Casey. Error, Uncertainty, and Loss in Digital Evidence. International
Journal of Digital Evidence, 1(2), Summer 2002.

[3] Peter Gutmann. Secure Deletion of Data from Magnetic and Solid-State Memory. In
Proceedings of the 6th USENIX Security Symposium, 1996.

[4] Chet Hosmer. Proving the Integrity of Digital Evidence with Time. International
Journal of Digital Evidence, 1(1). Spring 2002.

[5] Microsoft Organization. FAT: General Overview of On-Disk Format, 1.03 edition,
December 2002.

[6] NIST. Computer Forensic Tool Testing (CFTT). Available at:
http://www.cftt.nist.gov.

[7] NIST CFTT. Disk Imaging Tool Specification, 3.16 edition, Oct 2001.

www.ijde.org 11

http://www.dfrws.org/
http://www.cftt.nist.gov/

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

www.ijde.org 12

[8] Gary Palmer, A Road Map for Digital Forensic Research. Technical Report DTR-
T0010-01, DFRWS, November 2001. Report from the First Digital Forensic
Research Workshop (DFRWS).

© 2002 International Journal of Digital Evidence

About the Author

Brian Carrier (carrier@atstake.com) is a Research Scientist at @stake in Boston, MA,
and the technical lead for the @stake Incident Management and Forensics Center of
Excellence and Response Team. He has authored several open source forensic tools
including The @stake Sleuth Kit (TASK), the Autopsy Forensic Browser, and
TCTUTILs. Brian teaches forensics, incident response, and file systems at the @stake
Academy and the SANS forensics track. Brian is a member of the Honeynet Project and
the Forum of Incident Response and Security Teams (FIRST). Brian has a Masters in
Computer Science from Purdue University where he was a Research Assistant at the
Center for Education and Research in Information Assurance and Security (CERIAS).
Additional papers and tools can be found at
http://www.cerias.purdue.edu/homes/carrier/forensics.

mailto:carrier@atstake.com
http://www.cerias.purdue.edu/homes/carrier/forensics

	Introduction
	Definitions
	Layers Of Abstraction
	Abstraction Layer Errors
	Abstraction Layer Characteristics

	Analysis Categories
	Analysis Tool Requirements
	Fat File System Example
	FAT Design
	FAT Abstraction Layers
	Directory Entry Listing Example

	Conclusion
	Acknowledgments
	References

