
International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

NIST CFTT: Testing Disk Imaging Tools
James R. Lyle, Ph.D.
Computer Scientist

National Institute of Standards and Technology

1. Introduction
There is a critical need in the law enforcement community to ensure the reliability of
computer forensic tools. A capability is required to ensure that forensic software tools
consistently produce accurate and objective test results. The goal of the Computer
Forensic Tool Testing (CFTT) project at the National Institute of Standards and
Technology (NIST) is to establish a methodology for testing computer forensic software
tools by development of general tool specifications, test procedures, test criteria, test sets,
and test hardware. The results provide the information necessary for toolmakers to
improve tools, for users to make informed choices about acquiring and using computer
forensics tools, and for interested parties to understand the tools capabilities. Our
approach for testing computer forensic tools is based on well-recognized international
methodologies for conformance testing and quality testing, such as ISO/IEC 17025:1999,
General requirements for the competence of testing and calibration laboratories. This
project is further described at http://www.cftt.nist.gov/.

The CFTT is a joint project of the National Institute of Justice, the research and
development organization of the U.S. Department of Justice; the National Institute of
Standards and Technology’s Office of Law Enforcement Standards and Information
Technology Laboratory; and other agencies, such as the Technical Support Working
Group. The entire computer forensics community can help develop the specifications
and test methods by commenting on drafts as they are published on the website.

This paper reports on the initial CFTT work conducted at NIST in the Software
Diagnostics and Conformance Testing (SDCT) division of the Information Technology
Lab (ITL) as applied to disk imaging tools. An overview of the testing methodology
developed at NIST is presented followed by a discussion of the development of the
specification for testing two disk imaging tools, dd and SafeBack1.

2. CFTT methodology overview
The testing methodology developed by NIST is functionality driven. The activities of
forensic investigations are separated into discrete functions or categories, such as hard

1 † Certain trade names and company products are mentioned in the text or identified. In no case
does such identification imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the products are necessarily the best available for
the purpose.

www.ijde.org 1

http://www.cftt.nist.gov/

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

disk write protection, disk imaging, string searching, etc. A test methodology is then
developed for each category. Currently we have developed a methodology for disk
imaging tools and are developing a methodology for software hard disk write blocking
tools. Deleted file recovery tools will be the next category for development of a test
methodology.

The CFTT testing process is directed by a steering committee composed of
representatives from the law enforcement community, including the FBI, DoD, NIJ
(representing state and local agencies), NIST/OLES and other agencies. Currently the
steering committee selects tool categories for investigation and tools within a category for
actual testing by CFTT staff.

Under the disk imaging category the tools selected initially for testing were: Linux dd,
and SafeBack. The Royal Canadian Mounted Police hdl tool was selected for the hard
disk write block category. Final test reports are posted to a web site maintained by NIJ.

2.1 Specification development process
After a tool category and at least one tool is selected by the steering committee the
development process is as follows:

1. ITL and law enforcement staff develop requirements, assertions and test cases

document (called the tool category specification).
2. The tool category specification is posted to the web for peer review by members of

the computer forensics community and for public comment by other interested
parties.

3. Relevant comments and feedback are incorporated into the specification.
4. A test environment is designed for the tool category.

2.2 Tool test process
After a category specification has been developed and a tool selected, the test process is
as follows:

1. ITL acquires the tool to be tested.
2. ITL reviews the tool documentation.
3. ITL selects relevant test cases depending on features supported by the tool.
4. ITL develops test strategy.
5. ITL executes tests
6. ITL produces test report.
7. Steering Committee reviews test report.
8. Vendor reviews test report.
9. ITL posts support software to web.
10. NIJ posts test report to web.

3. The disk imaging specification
The base requirements developed for disk imaging tools are the following:

www.ijde.org 2

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

• The tool shall make a bit-stream duplicate or an image of an original disk or partition.
• The tool shall not alter the original disk.
• The tool shall be able to verify the integrity of a disk image file.
• The tool shall log I/O errors.

Several other optional requirements were also developed to allow for differences in tool
designs and available options. The detailed specification can be found at the CFTT
website.

3.1 Disk imaging tool test environment
The usual testing paradigm is a three step process of setting up a test environment,
executing the tool being tested and measuring the results of tool execution. This section
establishes the capabilities required to set up and measure each test. This is accomplished
by first determining what must be measured to confirm compliance with the tool
requirements and second what conditions must be created to allow an accurate
measurement of compliance.

3.1.1 Accuracy of duplicate creation
The basic function of a disk imaging tool is to create a duplicate of either a hard disk
drive or a partition from a hard disk drive. A disk imaging tool copies disk sectors from a
source to a destination such that the destination is identical or nearly identical to the
source. In the ideal situation, the destination is identical to the original. However,
forensically valid differences do occur when the source and destination are not the same
size or if partitions from the source disk must be relocated on the destination drive to
keep the destination partitions accessible.

A program to compare the corresponding sectors of two disks can determine the accuracy
or point of failure of the duplication process. If the destination is larger than the source,
then there are excess sectors on the destination. An analysis of the excess destination
sectors is useful to determine tool behavior in this case. However, to do such an analysis,
the source and destination sectors need to be uniquely recognizable from the sector
contents. If every sector of each disk used in a test is initialized to a known unique value
then the task of determining the origin of each sector of the destination during the
measurement of the results of a test run is simplified. When a destination sector is
examined there are three possibilities for the contents of the sector: the original
destination sector contents are unchanged by the test, the contents of a sector from the
source disk is written to the destination, or the imaging tool has generated new content
for the sector.

Another factor to consider in duplicate creation is the accessibility of the duplicate. It
may be desirable to ensure that the information copied to a disk can be accessed or the
duplicate drive be booted. However, if the duplicate drive has a different number of
cylinders and heads from the original, a sector for sector copy might not align partitions
to cylinder boundaries. To create a bootable copy of the source, the partitions of the
destination need to be aligned on cylinder boundaries. If there is more than one partition

www.ijde.org 3

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

on the source then the destination partitions are padded with extra sectors to create a
bootable destination.

3.1.2 Source Disk is Unchanged
The source disk must not be altered by running the disk imaging tool. One approach for
detecting any changes to a disk is to compute a hash function of the entire contents of a
disk both before and after the disk imaging tool is run. The likelihood that two disk drives
with different content would produce the same hash value is related to the length of the
hash function value. The secure hash algorithm (SHA-1, Federal Information Processing
Standard FIPS 180-1), used by CFTT, produces a 160 bit hash, giving a 1 in 280 chance
that any change to the source by the tool would be undetected. The hashing technique can
also be used to verify that a block of sectors has not been changed by some operation.

3.1.3 Verify image file integrity
Some disk imaging tools attempt to detect any changes to an image file after the creation
of the image file. A tool is needed to introduce a change into an image file.

3.1.4 Error logging
Since forensic evidence may need to be obtained from a faulty disk, the behavior and
capabilities of disk imaging tools in the presence of disk I/O errors must be evaluated.
The problem is how to have a reliably bad disk (i.e., a disk that can produce a variety of
failure modes and I/O errors useful to a planned test). One solution is to use a correctly
functioning disk, but intercept disk I/O requests such that a faulty disk can be simulated
to the disk imaging tool according to each test case specification. A better solution would
be to develop a hardware component that can be attached between the hard drive and the
computer to simulate (reliably) a faulty drive under external program control. The
software solution has been implemented but NIST is also researching a hardware
solution. The software approach has the drawbacks that there needs to be a separate
software component for each of several software environments and it would be difficult
to reliably simulate a faulty disk for a program accessing a disk directly through the ATA
interface. One software version is required for access by BIOS in DOS, one each for the
different Windows environment, and one for Linux. A hardware implementation would
be independent of any software environment.

3.1.5 Summary of Required Capabilities
The minimum set of basic capabilities required to support testing a disk imaging tool is
the following:

• Initialize each sector of a disk to a known unique value.
• Compute a SHA-1 hash of an entire disk or a block of disk sectors.
• Simulate a faulty disk drive.
• Compare two disks of either equal or unequal size.
• Compare two disk partitions of either equal or unequal size.

www.ijde.org 4

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

• Compare two disks where the destination disk has had partitions aligned to cylinder
boundaries.

In addition to these basic capabilities there are several additional capabilities that are
helpful. These include the following:

• Compare two sectors.
• Modify or examine the contents of a sector.
• Relocate a block of sectors.
• Examine a partition table.

3.1.6 Software Overview
To support the capabilities necessary for testing disk imaging tools, the programs listed in
Figure 1 were developed. The support software can be grouped into four categories:
programs to set up something required for the test, programs to measure the results of a
test, programs to document some aspect of a test, and utility programs to provide
capabilities outside the scope of the usual test case.

Figure 1 List of Support Programs

Program Category Function
DISKWIPE Setup Write a unique pattern to each sector of a disk.
BADDISK Setup Simulate a bad disk sector for legacy BIOS access.
BADX13 Setup Simulate a bad disk sector for extended BIOS access.
CORRUPT Setup Change one byte in a file (corrupt an image file).
ADJCMP Measure Compare two disks by partitions (allowing for cylinder

alignment).
DISKCMP Measure Compare two disks.
PARTCMP Measure Compare two partitions.
DISKHASH Measure Compute a SHA-1 for an entire disk.
SECHASH Measure Compute a SHA-1 for part of a disk.
LOGCASE Document Log information about the test run, e.g., disks used.
LOGSETUP Document Log information about source hard drive setup.
PARTAB Document Log partition tables.
DISKCHG Utility Change or examine the content of a single disk sector.
SECCMP Utility Compare two disk sectors.
SECCOPY Utility Copy a block of sectors from one location to another.

3.2 The disk imaging test cases
Each disk imaging test case is designed to follow a sequence of steps that set up the test,
execute the disk imaging tool under test and measure the results. The general structure of
a test case is outlined in Figure 2. Usually a source drive is set up (steps 1-3) once and
then used in more than one test case.

www.ijde.org 5

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

Figure 2 General Structure of a Test Case

Setup for the test case:
1. Record details of source disk setup.
2. Initialize the source disk to a known value.
3. Hash the source disk and save the hash value.
4. Record details of test case setup.
5. Initialize a destination disk.
6. If the test requires a partition on the destination, create and format a partition on the

destination disk.
7. If the test uses an image file, partition and format a media disk.

Execute the tool being tested:
8. If the test requires a disk I/O error, set up disk error simulation.
9. If the test requires an image file, use the tool to create an image file of the source on

the media disk.
10. If the test requires a corrupted image file, corrupt the image file.
11. Use the disk imaging tool to create the destination disk either from a copy of the

source disk or by restoring an image file of the source to the destination.

Measure the results:
12. Compare the source to the destination.
13. Compute a hash of the source disk, compare with the saved hash value.
14. Examine the tool log file for relevant messages.

The major challenge to developing the test cases for a tool category is the identification
of the relevant parameters that can be varied across test cases. After the test parameters
are identified, they must be incorporated into the specification in a meaningful way. To
identify relevant parameters, major imaging tools such as SafeBack and EnCase were
examined for features and options provided by the tools. In addition, general features of
the Intel-based PC architecture were considered. The result is the table of parameters and
values presented in Table 3.2-1.
Table 3.2-1 Disk Imaging Test Parameters and Values

Parameter Values
Tool Functions Copy, Image, Verify
Source interface BIOS to SCSI, BIOS to IDE, Direct IDE, ASPI SCSI, Legacy
Destination interface BIOS to SCSI, BIOS to IDE, Direct IDE, ASPI SCSI, Legacy
Relative size Equal, Source < destination, Source > destination
Errors none, src read, dst write, image read, image write, corrupt image
Object Type Entire disk, partition: FAT12, FAT16, FAT32, NTFS, Ext2
Remote access yes, no

If a test case were generated for each possible combination of parameter values, more
than 32,000 test cases would be produced. To keep the number of test cases to a practical

www.ijde.org 6

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

level, a number of techniques were used. For example, instead of all possible
combinations of parameter values, a more relaxed criterion such as pair-wise selection
(cases are selected such that for each pair of parameter values there is at least one case).
The number of test cases was also reduced by careful elimination of unlikely
combinations of parameter values.

3.2.1 Tool Functions
The most basic function common to all imaging tools is for the tool to read all accessible
sectors of a hard drive and store the contents in some form such that any designated
sector (word, byte or bit) can be accurately recovered and examined. The challenge that
arises in testing is that no imaging tool stores the sectors in exactly the same way. Some
tools allow the copying of the source drive to another drive. Some tools produce an image
file in a proprietary format. Since the image file format is usually unique for each tool, it
is difficult to examine the image file to determine if all the sectors from the original hard
drive are included in the image file. However, since most tools have a function to restore
the contents of the image file to a destination drive, this function can be used to
determine if all the sectors from the source are accurately represented in the image file. If
a sector is present on the destination, it can be inferred that the sector is present in the
image file. If a sector is not present on the destination there are two possibilities, either
the sector is not in the image file or a sector is in the image file, but the restore operation
failed to produce an accurate destination. This can usually be easily resolved.

3.2.2 Source and destination interfaces
There are several possible interfaces for attaching a hard drive to a computer. Each
interface requires different procedures for access to the sectors on the disk. We omitted
testing the earliest hard drive interfaces and restricted test case selection to IDE and SCSI
drives accessed either directly or through the BIOS interface. We also consider if the
BIOS includes the extensions for hard drives greater that 8GB or if the BIOS can only
access smaller drives (legacy BIOS).

3.2.3 Relative size
The relative size of the source and destination needs to be varied among the three
possible relationships. A smaller destination should generate a warning from the tool.
Cases with a larger destination should also consider how the tool deals with the excess
sectors. In addition, if the destination is larger and the drive geometry differs from the
source, the tool may have a feature to align partitions on cylinder boundaries.

3.2.4 Errors
Disk I/O errors may occur due to bad sectors or a failing disk. There are different failure
modes depending on the selected tool operation.
1. Copy of source to destination has two failure modes: read source, write destination.
2. Source to image to destination operation has four failure modes: read source, write

image, read image and write destination.
3. Verify image file has a single failure mode: read image.

www.ijde.org 7

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

4. For tools that check the integrity of an image file, the tool should detect if the image
file is modified.

3.2.5 Object Type
There are over a hundred different types of disk partition formats. Microsoft operating
systems recognize at least 15 partition types. However, many partition types are special
purpose (0x3C, Partition Magic recovery), obscure operating system (0x93, Amoeba),
laptop hibernation (0xA0, IBM Thinkpad) or UNIX dialect (0xA5, FreeBSD). Because of
the nature of a disk copy operation (bit for bit) the format of any partitions does not
matter during an operation on an entire disk, however a partition operation could depend
on the partition format. The most relevant (widely used) partition types are FAT12,
FAT16 (three types), FAT32 (two types), NTFS and Linux native partition (0x83 or
ext2).

3.2.6 Remote access
Since this is a very slow operation, infrequently used, no test cases were created using
remote access.

4. Results Evaluation Procedure
After a test case has been run, the results must be examined to determine if the results
should be accepted or if some further actions are required to complete the test case. The
evaluation of results must consider if the apparent results are an accurate reflection of the
tool under test. Either a successful or unsuccessful test outcome must be reviewed to
ensure that an error has not occurred.

The first issue is: if a test appears to be successful should we accept the result that the
tool has produced the expected result for the particular test case? There are several ways
that the test could appear to produce expected results without actually doing so. This
would usually involve entire steps not running and the measurement of disks that are left
in the final state from an earlier successful test. This can be mitigated by always ensuring
that the destination disk has been wiped at the beginning of each test. The diskwipe log
file should show that the correct number of sectors were wiped for the given destination
disk.

The second issue is: if a test produces an anomaly and appears to fail, has the tool failed
or is something else wrong? Each anomalous test run is reviewed to characterize the
anomaly and then a course of action is selected.
1. If a hardware or procedural problem can be found, e.g., disk drive has failed, or

improper configuration for the test, then rerun the test with appropriate adjustments.
2. If no hardware or procedural problem can be found and the anomaly matches a

known anomaly then accept the anomaly as genuine.
3. If the anomaly is unique then defer a decision until more test cases have been run.

These test cases are referred to as defer until more.
4. If the anomaly matches an anomaly in the defer until more category then both results

are examined for common factors. Based on the reviewer’s judgment a new known
anomaly may be established, otherwise the test cases remain defer until more.

www.ijde.org 8

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

After all test cases have been run any test cases remaining in the defer until more
category must be resolved by either accepting the anomaly as genuine or reclassified
based on additional investigation as needed.

5. Technical Difficulties
The test procedures sometimes need refinement. As an example, during dd testing some
results seemed to indicate that the Linux environment was making a change to the source
disk. After investigation we found that the problem was actually the test procedure.
Under some conditions the creation of a partition on one hard drive was accompanied by
a change to another hard drive.

The original procedure for creating a partition on a destination drive was to install both
the source drive and the destination drive in a host computer, boot into DOS, diskwipe
the destination, and create the partition on the destination. This procedure worked without
any problems for creating FAT16 and Linux EXT2 partitions. However, when creating
FAT32 or NTFS partitions on the destination, a change would be made to the source
drive. This gave the appearance that booting into the Linux environment for the test was
making a change to the source drive. The procedure was modified to not install the source
drive until after the partition was created on the destination drive.

A second difficulty occurred with the bad sector simulation software. The initial use of
the bad sector simulation software was with SafeBack. The tool worked as expected
simulating an error for the write command (0x03), but produced a very interesting result
the first time it was used to simulate a read command (0x02) error.

When the tool is executed a command, a physical drive and a disk address are specified
to indicate the condition that should trigger the tool. The tool intercepts all interrupt 13
commands and any command not matching the trigger condition is passed on to the BIOS
for execution. However, any command that matches the trigger condition is not executed
and an error code is returned to the calling program. A feedback message is also written
to the display indicating that the tool had been triggered.

A test was run with the tool setup to trigger on a read command for a selected sector.
SafeBack was executed and the trigger message appeared on the display screen. In fact,
the feedback indicated that SafeBack attempted two retries of the read command.
However, when the source drive and the destination drive were compared there were no
differences. This was surprising since there should have been at least one sector different.
On further analysis, it was observed that there was a second command, read long (0x10),
that could be used to read from a hard drive. The test was run again with both the read
and read long commands selected. This time the tool feedback indicated that both
commands triggered the tool and when the source was compared to the destination the
selected sector was different.

www.ijde.org 9

International Journal of Digital Evidence Winter 2003, Volume 1, Issue 4

www.ijde.org 10

6. Current Status and Future Directions
The initial phase of the project is coming to an end. We have been developing a sound
methodology based on recognized international standards. Now that we have a
methodology in place we are beginning to produce results.

Test reports for dd in the Linux environment and SafeBack version 2.18 are in final
review for publication on the NIJ web site. The EnCase imaging function is currently
being tested. The specification for software hard disk write protect has been posted to the
web and available for public comment. Currently test cases for software hard disk write
protect tools are being developed.

In the near future NIST, with input from the law enforcement community, will develop a
specification for deleted file recovery tools. This specification will be used in testing the
most widely used deleted file recovery tools. In addition, using the software hard disk
write protect specification as a basis, a specification for hardware hard disk write protect
devices will be developed. Other disk imaging tools such as dd in the FreeBSD
environment and the iLook imaging tool will be tested in 2003.

© 2002 International Journal of Digital Evidence

About the Author

James Lyle (JLYLE@NIST.GOV) wrote his first FORTRAN program in 1968 and has
been programming ever since. He received a BS in Mathematics (1972) and an MS in
Mathematics (1975) from East Tennessee State University; from the University of
Maryland at College Park, Dr. Lyle received an MS (1982) and PhD (1984) in Computer
Science. Currently he is the project leader for the Computer Forensics Tool Testing
project at the National Institute of Standards and Technology. Before joining NIST full
time in 1993, Dr. Lyle was a Faculty Associate at NIST and an Assistant Professor at the
University of Maryland Baltimore County.

	Introduction
	CFTT methodology overview
	Specification development process
	Tool test process

	The disk imaging specification
	Disk imaging tool test environment
	Accuracy of duplicate creation
	Source Disk is Unchanged
	Verify image file integrity
	Error logging
	Summary of Required Capabilities
	Software Overview

	The disk imaging test cases
	Tool Functions
	Source and destination interfaces
	Relative size
	Errors
	Object Type
	Remote access

	Results Evaluation Procedure
	Technical Difficulties
	Current Status and Future Directions

