Mathematics MAT 201: Calculus I
Spring 2015
TR 2:30 - 3:45 p.m., Hubbard 210

Instructor: Dr. Brad Emmons
Office: Faculty Center 203
Telephone: 792-3413 (Don’t leave voicemail!)
Office Hours: M 2:00 - 4:00, TR 10:00 - 11:30, or by appointment
Email: bemmons@utica.edu
Homepage: http://www.utica.edu/faculty_staff/bemmons

Course Materials
Calculus, Early Transcendental Functions, 6th edition, by Larson and Edwards (required)

Introduction
You are among a select group of very lucky individuals! Calculus, independently and simultaneously discovered by Leibnitz and Newton, is one of the major crowning achievements in 17th century mathematics. Calculus is a branch of mathematics which studies how things change relative to one another. In particular, how things change with respect to time. Through analyzing some basic concepts in depth, we will develop some rather clever techniques for calculation. These techniques can be brought into fruition by attacking real world problems.

In this course we will start out by reviewing some concepts of Algebra. Then we will cover limits and continuity, differentiation, rates of change, and related rates. We will focus on the theory of the subject, as well as some of the more interesting applications.

Exams
There will be two in-class exams, as well as a final cumulative exam. The exams will test your ability to work through some of the computations, as well as your ability to apply the techniques to certain applications. The first exam is scheduled for Thursday, February 19, and the second exam is scheduled for Thursday, April 2. The final exam will be held on Saturday, May 6 from 3:00 - 6:00 p.m.. Each exam will count for 25 percent of your final grade. There will be NO make-ups for missed exams. Please look over your schedule as soon as possible. If you see a potential conflict, inform me immediately.

Homework
The best way to learn Mathematics is to solve problems. At the end of each section, there are a variety of exercises that you can look at to help understand concepts and hone your skills. I will suggest problems for you to attempt from the end of the section, but I will not grade these. Instead, I will assign weekly problem sheets that will be collected and graded. These problems will be more in-depth than the drill-type activities and will require more exposition on your part. You will be graded on content, organization and completion of the assignments. In addition to the graded problems, each assignment will carry 5 completion points. To earn 5 out of 5 of the completion points, the assignment must be written up neatly and thoroughly with complete solutions to all of the assigned problems. Late homework will not be graded, but you may still earn completion points on late assignments. The homework is designed to help you identify where you might have difficulties. If you encounter any trouble with an assignment or a concept, seek help!

Attendance
Attendance in MAT 201 is extremely important. Although there is no official attendance policy, I strongly suggest that you do not miss any classes unnecessarily. On the occasion that you cannot make it to class, it is your responsibility to get the assignment due that day to me on time and to catch up on any work that you missed. Also, I will ask that you please try to be in class at 2:30 p.m. and ready to start class.

Derivatives Proficiency Exams
In order to pass the course, you must pass the Derivatives Proficiency Exam (DPE). The exam will consist of 20 basic questions, and in order to pass the exam, you must get 18 questions correct. The DPE consists of basic questions such as, find the derivative of sin 3x. Don’t worry just yet. We will learn how to do these types of problems in due course. You will have three attempts on the exam, and the exam will be graded Pass/Fail. You are responsible for scheduling a time to take the exam when you feel you are ready, either during office hours, or at another time.
Grading
Your grade in this course will be based on two main factors: homework and exams. The homework will be worth 25% of your final grade, and the exams 75%. In addition to these factors, minor ethereal factors such as attendance, class participation, attitude, and improvement over the course of the semester can also affect your grade. To determine your final grade, 90–100% = A, 80–89% = B, 70–79% = C, 60–69% = D, 59 and below = F, with the top two percents receiving a + and the bottom two percents receiving a −.

Calculators
The use of calculators will not be allowed on any quizzes or exams. None of the work will require any sophisticated computations. You may use a calculator when working on your homework to check your work. However, since will not be allowed to use it on the exam, I suggest you do as much work without your calculator as possible.

Special Needs
If you have a disability for which you are requesting an accommodation, you are encouraged to contact both your instructor and Academic Support Services, 315-792-3032 or khenkel@utica.edu.

Any student who has need of special adaptations or accommodations due to documented learning or physical disabilities should notify me within the first two weeks of class. Instructors, Academic Support Services, and other appropriate counselors will work with you to adapt and accommodate your special needs. Every effort will be made to help you master the course content in an effective and appropriate way.

Intellectual Honesty
Academic honesty is necessary for the free exchange of ideas and Utica College expects academic honesty from all students.

Academic dishonesty includes both cheating and plagiarism. Plagiarism is the intentional or unintentional use of other peoples ideas, words, and/or factual information without crediting the source. Cheating refers to both the giving and the receiving of unauthorized assistance in the taking of examinations or in the creation of assigned and/or graded class work.

Utica College faculty are authorized to assign a wide range of academic penalties for incidents of academic dishonesty. Depending on the nature of the offense, the penalty may include a reduced grade for the particular assignment or course, a grade of F for the course, or the grade of F for cheating on the course.

Incidents of academic dishonesty are reported to the Vice President for Academic Affairs who will refer any repeat offense, or any particularly egregious first offence, to the Academic Standards Committee which may recommend a more severe penalty than that imposed by the faculty member.

Important Dates
Thursday, February 19 – Exam I
Monday, March 16 - Friday, March 20 – Spring Break (no class)
Thursday, April 2 – Exam I
Tuesday, May 5 – Last Day of Classes
Saturday, May 6, 3:00 p.m. - 6:00 p.m. – Final Exam

Suggestions
Come to class with your homework assignment completed every day
Study for at least 30 minutes each day in addition to completing your homework assignment
Read the section we will be covering before we cover it in class
Do not fall behind!
Come to office hours to discuss homework and concepts. I am here to help!
Syllabus
MAT 201 : Calculus I
Term : Spring 2015

Week 1 January 22 Course Policies, Syllabus, Section 1.1
Week 2 January 27 Section 1.2 – Linear Models and Rates of Change
 January 29 Section 1.3 – Functions and Their Graphs
Week 3 February 3 Section 1.5 – Inverse Functions
 February 5 Section 1.6 – Exponential and Logarithmic Functions
Week 4 February 10 Section 2.1 – A Preview of Calculus
 February 12 Section 2.2 – Finding Limits Graphically and Numerically
Week 5 February 17 Section 2.3 – Evaluating Limits Analytically
 February 19 Exam I
Week 6 February 24 Section 2.4 – Continuity and One-Sided Limits
 February 26 Section 2.5 – Infinite Limits
Week 7 March 3 Section 3.1 – The Derivative and the Tangent Line Problem
 March 5 Section 3.2 – Basic Differentiation Rules and rates of Change
Week 8 March 10 Section 3.3 – Product and Quotient Rules and Higher-Order Derivatives
 March 12 Section 3.4 – The Chain Rule
Week 9 March 17 NO CLASS
 March 19 NO CLASS
Week 10 March 24 Section 3.5 – Implicit Differentiation
 March 26 Section 3.6 – Derivatives of Inverse Functions
Week 11 March 31 Section 3.7 – Related Rates
 April 2 Exam II
Week 12 April 7 Section 3.8 – Newton’s Method
 April 9 Section 4.1 – Extrema on an Interval
Week 13 April 14 Section 4.2 – Rolle’s Theorem and the Mean Value Theorem
 April 16 Section 4.3 – Increasing and Decreasing Functions and First Derivative Test
Week 14 April 21 Section 4.4 – Concavity and the Second Derivative Test
 April 23 Section 4.5 – Limits at Infinity
Week 15 April 28 Section 4.6 – A Summary of Curve Sketching
 April 30 Section 4.7 – Optimization Problems
Week 16 May 5 Section 4.8 – Differentials