
International Journal of Digital Evidence                                 Spring 2007, Volume 6, Issue 1 

Identifying Authorship by Byte-Level N-Grams:  
The Source Code Author Profile (SCAP) Method 

 
Georgia Frantzeskou 
Efstathios Stamatatos 

Stefanos Gritzalis 
Laboratory of Information and Communication Systems Security 

Department of Information and Communication Systems Engineering 
University of the Aegean 

 
Carole E. Chaski, PhD 

Blake Stephen Howald, JD 
Institute for Linguistic Evidence, Inc 

 
 
Abstract 
 
Source code author identification deals with identifying the most likely author of a computer 
program, given a set of predefined author candidates. There are several scenarios where 
digital evidence of this kind plays a role in investigation and adjudication, such as code 
authorship disputes, intellectual property infringement, tracing the source of code left in the 
system after a cyber attack, and so forth.  As in any identification task, the disputed program is 
compared to undisputed, known programming samples by the predefined author candidates. 
We present a new approach, called the SCAP (Source Code Author Profiles) approach, based 
on byte-level n-gram profiles representing the source code author’s style. The SCAP method 
extends a method originally applied to natural language text authorship attribution; we show 
that an n-gram approach also suits the characteristics of source code analysis. The 
methodological extension includes a simplified profile and a less complicated, but more 
effective, similarity measure. Experiments on data sets of different programming-language 
(Java or C++) and commented/commentless code demonstrate the effectiveness of these 
extensions. The SCAP approach is programming-language independent. Moreover, the SCAP 
approach deals surprisingly well with cases where only a limited amount of very short 
programs per programmer is available for training. Finally, it is also demonstrated that SCAP 
effectiveness persists even in the absence of comments in the source code, a condition 
usually met in cyber-crime cases. 
 
 
1. The Forensic Significance of Source Code  
 
Nowadays, in a wide variety of legal cases it is important to identify the author of a usually 
limited piece of programming code. Such situations include cyber attacks in the form of 
viruses, Trojan horses, logic bombs, fraud, and credit card cloning, code authorship disputes, 
and intellectual property infringement. Identifying the authorship of malicious or stolen source 
code in a reliable way has become a primary goal for digital investigators (Spafford and 
Weeber 1993). Please see Appendix 1 for a legal analysis of the forensic significance of 
source code. 
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In this paper we present a new approach, which we call the SCAP (Source Code Author 
Profiles) method, based on byte-level n-gram –or sequential slicing– profiles representing the 
source code author’s style. The SCAP method extends an approach originally applied to 
natural language text authorship attribution by Keselj et. al. (2003). We show that the n-gram 
approach also suits the characteristics of source code analysis. Our methodological extension 
includes a simplified profile and a less complicated but more effective similarity measure. 
Although Frantzeskou’s doctoral research includes numerous experiments which test SCAP 
under multiple forensically-significant conditions, in this article we present only two 
experiments. These experiments show that the SCAP method functions well on different 
programming languages, deals surprisingly well with cases where only a limited amount of very 
short programs per programmer is available for training, and performs well even in the 
absence of comments in the source code, a condition usually met in cyber-crime cases. 
 
The rest of this paper is organized as follows. Section 2 contains a brief review of relevant 
research in the area of authorship attribution, focusing on Keselj et. al.’s (2003) method.  
Section 3 describes our approach. Section 4 presents the results two experiments using 
SCAP. Finally, section 5 discusses the forensic application of SCAP and our research agenda 
for future work. 

 
 

2. Related Work in Computing and Natural Language Authorship   
 
The general methodology of authorship attribution applies to both natural and computing 
languages. Although source code is much more grammatically restrictive than natural 
languages, there is still a large degree of flexibility when writing a program (Krsul and Spafford 
1996).  
 
Computational authorship attribution methodology for both natural and computing languages 
requires two main steps (Krsul and Spafford 1995; Chaski 1997, 2005; MacDonell and Gray 
2001, Ding and Samadzadeh 2004). The first step is the extraction of variables representing 
the author’s style. Ideally, authorial features should have low within-author variability, and high 
between-author variability (Krsul and Spafford 1996, Kilgour, Gray, Sallis and MacDonell 1997, 
Chaski 1997). The second step is applying a statistical or machine learning algorithm to these 
variables in order to develop models that are capable of discriminating between several 
authors. Defining the variables and discovering the best classification algorithm for the defined 
variables is a difficult, empirical task, but it is feasible and prevents subjective pronouncements 
which are no longer considered by courts to be acceptable scientific forensic evidence (Chaski 
1997, 2005).  
 
 
Authorship Attribution Methods for Computing Languages 
 
In general, when authorship attribution methods have been developed for computing 
languages, the suggested software features are programming language-dependent and 
require either computational cost or hand-coding for their calculation. The main focus of the 
previous work was the definition of the most appropriate features for representing the style of 
an author (Oman and Cook 1989; Longstaff and Shultz 1993; Spafford and Weeber 1993; 
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Sallis, et. al. 1996).  For author identification in computing languages, proposed metrics have 
included, for example, indentation, placement of comments, placement of braces, character 
preferences, construct preferences, statistical distribution of variable lengths and function 
name lengths, statistical distribution of lines of code per function, ratio of keywords per lines of 
code, spelling errors, the degree to which code and comments match, and whether identifiers 
used are meaningful. This list shows that many of the previously proposed features either 
cannot be measured objectively in any source code program (a condition which also plagued 
natural language authorship identification methods, until very recently) or require hand-coding. 
 
Krsul and Spafford (1995) developed a software analyzer program to automate the coding of 
software metrics. The software analyzer extracted layout, style and structure features from 88 
C programs belonging to 29 known authors. A tool was developed to visualize the metrics 
collected and help select those metrics that exhibited little within-author variation, but large 
between-author variation. Discriminant function analysis was applied on the chosen subset of 
metrics to classify the programs by author. The experiment achieved 73% overall accuracy.  
 
MacDonell and his colleagues (Kilgour, Gray, Sallis and MacDonell 1997; Gray, Sallis and 
MacDonell 1998; MacDonell and Gray 2001) have automated authorship identification of 
computer programs written in C++.  Gray, Sallis and MacDonell 1998 developed a dictionary-
based system called IDENTIFIED (Integrated Dictionary-based Extraction of Non-language-
dependent Token Information for Forensic Identification, Examination, and Discrimination) to 
extract source code metrics for authorship analysis. In MacDonell and Gray’s 2001 work, 
satisfactory results were obtained for C++ programs using case-based reasoning, feed-forward 
neural network, and multiple discriminant analysis. The best prediction accuracy – at 88% for 7 
different authors-- was achieved using Case-Based Reasoning. 
 
Focusing on Java source code, Ding and Samadzadeh (2004) investigated the extraction of a 
set of software metrics that could be used to identify the author. A set of 56 metrics of Java 
programs was proposed for authorship analysis. The contributions of the selected metrics to 
authorship identification were measured by canonical discriminant analysis. Forty-six groups of 
programs were diversely collected.  They achieved a classification accuracy of 87.0% with the 
use of canonical variates. 
 
This brief review of previous work reveals four criteria for our own research agenda. First, 
metrics selection is not a trivial process and usually involves setting thresholds to eliminate 
those metrics that contribute little to the classification model. Second, some of the metrics are 
not readily extracted automatically because they involve subjective judgments. Third, many 
software metrics are programming-language dependent. For example, metrics useful for Java 
programs cannot be used for examining C or Pascal programs. Fourth, even with automated 
feature extraction and analysis, the classification accuracy rates do not reach 90%. 
 
In sum, the previous work in author identification of programming code has suffered from 
language-dependence, manual coding of subjective features and accuracy rates below 90%. 
In this context, our goal is to provide a fully-automated, language-independent method with 
high reliability for distinguishing authors and assigning programs to programmers. Can recent 
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computational approaches in natural language author identification provide assistance in 
reaching our goal? 
 
 
Authorship Attribution Methods for Natural Language 
 
For natural language texts, authorship puzzles have engaged scholars in a wide range of 
disciplines, from literature (Elliot and Valenza 1991), linguistics (Chaski 1997, 2004, 2005) and 
computer science (Keselj et. al. 2003, Peng et. al. 2004, Stamatatos et. al. 2000). Recently, a 
number of computational authorship attribution approaches have been presented (Peng et. al. 
2004, Stamatatos et. al. 2000, O’Brien and Vogel 2003, Chaski 2005) proving that the author 
of a natural language text can be reliably identified with methods which focus on syntactic, 
lexical and character-level variables using classification procedures such as naïve Bayes, chi 
by degrees of freedom, and discriminant function analysis. 
 
The SCAP method extends Keselj et. al.’s 2003 work, so it is important to describe this 
particular method. In Keselj et. al.’s 2003 work, the text is decomposed into character-level n-
grams (using a Perl text processing program by Keselj 2003).  An n-gram is an n-contiguous 
sequence and can be defined on the byte, character, or word level. Byte, character and word 
n-grams have long been used in a variety of applications such as speech recognition, 
language identification, context sensitive spelling correction, optical character recognition etc. 
For the Roman alphabet’s 26 graphemes, 676 character-level bi-grams are thus possible, 
although not all of these possible bi-grams will be instantiated in any given text due to the 
phonotactic constraints of any particular natural of programming language; for instance, 
English permits [xa] as in [Xavier] but not [xb], although the bi-gram [xb] may occur in a 
mathematical equation or programming variable name. 
 
Keselj et. al. (2003) defines an author profile as “a set of length L of the most frequent n-grams 
with their normalized frequencies.” The profile of an author is, then, the ordered set of pairs 
{(x1; f1); (x2; f2),…,(xL; fL)} of the L most frequent n-grams xi and their normalized frequencies fi. 
Keselj et. al. (2003) determine authorship based on the dissimilarity between two profiles, 
comparing the most frequent n-grams. Identical texts will obviously have an identical set of L 
most frequent bi-grams, and thus have zero dissimilarity. Different texts will be more or less 
similar to each other, based on the amount of most-frequent bi-grams which they share. It is 
important to note that the normalized frequencies constitute the author profile in Keselj et. al.’s 
2003 approach.   
 
The original dissimilarity measure used by Keselj et. al. (2003) in text authorship attribution is a 
form of relative distance:   
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where f1(n) and f2(n) are either the normalized frequencies of an n-gram n in the two compared 
texts or 0 if the n-gram does not exist in the text(s). A text is classified to the author whose 
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profile has the minimal distance from the text profile, using this measure. Hereafter, this 
distance measure will be called Relative Distance (RD).  
  
 
3. The Scap Method 
 
In this paper, we present the SCAP (Source Code Author Profiles) approach, which is an 
extension of a method that has been successfully applied to text authorship identification by 
Peng et. al. (2004). As in Keselj et. al.’s 2003 work, a profile for each author is developed from 
the frequency rank of n-grams and a similarity measure is used to classify a program to an 
author. But the SCAP method differs from the Keselj approach in two ways: first, we use the 
raw frequencies of the byte-level n-grams, and second, we use a simple, overlap measure for 
classification. The procedure is explained in the following steps. 
 

• Step 1. Divide the known source code programs into training and testing data.  
• Step 2. Concatenate all the programs in the training set into one large file. Leave the 

testing data programs in their own files.  
• Step 3. For each author training and testing file, get the author profile: 

o Step 3.1. Extract the n-grams at the byte-level, including all non-printing 
characters. All characters, even the non-printable, such as spaces, tabs, new 
line characters are included in the extraction of the n-grams. 

o Step 3.2. Get the frequency for each n-gram type.  
 
In our analyses, Keselj’s (2003) Perl package Text::N-grams has been used to produce n-gram 
tables for each file or set of files that is required. An example of such a table is given in Table 
1A. The first column contains the n-grams found in a source code file and the second column 
the corresponding frequency of occurrence. 
 

Table 1A. N-gram Frequencies Extracted From a Source Code File 
3-gram Frequency 
sio 28 
_th 28 
f_( 20 
_=_ 17 
usi 16 
_ms 16 
out 15 
ine 15 
\n/* 15 
on_ 14 
_in 14 
fp_ 14 
the 14 
sg_ 14 
_i_ 14 
in_ 14 
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The n-grams are ranked by frequency, in descending order, so that the most frequently-
occurring n-grams are listed first. 
 

o Step 3.3. List the n-gram types in descending frequency, so the most frequent 
are listed first.  

 
This is the author profile. The author profile will have varying lengths depending on the 
length (in terms of characters) of the programming data and the length of the n-gram. Keep 
a record of each author's profile length for each n-gram length, such as shown in Table 1B.  
 

Table 1B. Example of Varying Length of Author Profile for Varying N-Grams 
 bigram trigram 4-gram 5-gram 6-gram 7-gram 
author 1  250 400 650 890 1000 1300 
author 2  475 680 980 1200 1700 1982 
test 
document  

100 223 447 589 793 874 

 
Unlike Keselj et. al.’s approach, SCAP does not use the normalized frequencies of the n-
grams. Hence the profile we propose is a Simplified Profile (SP). The SP is the set of the L 
most frequent n-grams {x1, x2,…,xL}, when they are ranked by descending frequency. The 
actual frequency is not used mathematically except for ranking the n-grams. The length L of 
the profile is discussed below. 
 

• Step 4. For each test file, compare its profile to each author using the SPI measure:  
o Step 4.1. Select a specific n-gram length, such as trigram (or 6-gram or 

whatever).  
o Step 4.2. Select a specific profile length at which to cut off the author profile.  

 
For instance, given the data in Table 1B, if we select trigram and profile length of 500, 
when we compare author 1 to author 2, we will use all of author 1's trigrams but we will use 
only the first 500 most frequent trigrams from author 2.  Author 1’s profile only contains 400 
trigrams, so all of author 1’s profile is included in the comparison process. Author 2’s profile 
contains 680 trigrams, so only the first 500 most frequent trigrams are included in the 
comparison process. Setting the Profile Length at 500 means that we cut off the profile at 
that specified length, regardless of how many trigrams occur in a particular author’s profile 
beyond that specified length. 
 

o Step 4.3. For each pair of test and known author profiles, create the 
Simplified Profile Intersection.  

 
Letting SPA and SPP be the simplified profiles of one known author and test or disputed 
program, respectively, then the similarity distance is given by the size of the intersection of 
the two profiles: 

     )2(PA SPSP ∩  
In other words, the similarity measure we propose is the amount of common n-grams in the 
profiles of the test case and the author.  
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o Step 4.4. Classify the test document to the author whose profile at the 
specified length has the highest number of common n-grams with the test 
document profile at the specified length. The test document is classified to the 
author with whom we achieved the largest amount of intersection. We have 
developed a number of perl scripts in order to create the sets of n-gram tables 
for the different values of n (i.e., n-gram length), L (i.e., profile length) and for 
the classification of the program file to the author with the smallest distance 
(i.e., greatest overlap).  

  
By shifting the n-gram length and the profile length (or cut-off, or number of n-gram types 
included in the SPI), we can test how accurate the method is under different conditions, as 
shown in the following experimental results. 
 
One of the inherent advantages of this approach is that it is language independent since it is 
based on low-level information. As a result, it can be applied with no additional cost to data 
sets where programs are written in C++, Java, perl etc. Moreover, it does not require multiple 
training examples from each author, since it is based on one profile per author. The more 
source code programs available for each author, the longer the profile lengths can be selected, 
and, as will be seen in the following experiments, the more reliable the author profile.  
 
4. The Data Sets and Experimental Results 
 
We present two experiments from Frantzeskou’s doctoral research. Each experiment uses a 
different programming language in order to test SCAP’s language independence. In each 
experiment, some authors are represented by very few samples and very short programs. The 
second experiment uses data which includes no comments. 
 
Table 2 shows the data sets used in this study. The first dataset “MacDonell C++” contains 
C++ programs which have previously been used in authorship analysis by MacDonell and his 
colleagues. The second dataset “NoCom Java” contains Java programs which were 
downloaded from the website freshmeat.net  as open source programs. These files were 
stripped of any comments.  
 
In Table 2, “Programs per author” is expressed by the minimum and maximum number of 
program samples per author in the data set.  Program sample length is expressed by the 
average Lines Of Code (LOC).  
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Table 2.  Data Sets 
 MacDonell

C++ 
NoCom 
Java 

Number of Authors 6 8 
Samples per 
Author 

5-114 4-29 

Total Samples 268 107 
Training Set 
Samples 

134 56 

Testing Set 
Samples 

133 51 

Size of smallest 
sample ( LOC) 

19 10 

Size of biggest 
sample ( LOC) 

1449 639 

Mean LOC in 
Training Set 

206.4 122.28 

Mean LOC in  
Test Set 

213 95.92 

Mean LOC/sample 210 109.1 
Used in Experiment 1 2 

 
 
Comparison of Relative Distance and Simplified Profile Intersection on MacDonell Data  
 
Our purpose in this experiment was to check that the SCAP works at least equally as well as 
the previous methodologies for source code author identification. As mentioned earlier, 
MacDonell et. al. (2001) reported the best result, using the case-based reasoning (that is, a 
memory-based learning) algorithm, for classification accuracy at 88%.  
 
The MacDonell data set was split (as equally as possible) into the training set (134 programs) 
and the test set (133 programs). We ran the aforementioned perl programs to extract n-grams 
from two to eight consecutive byte-level characters. For each of the six authors in the 
MacDonell dataset, we calculated the possible profile lengths; these are shown in Table 3. 
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           Table 3. Profile Lengths of Six Authors in MacDonell Dataset 
Author 1 2 3 4 5 6 
Profile Length for bigram 1949 2391 1580 2219 767 1522 
Profile Length for trigram 8487 12687 5778 7815 1893 6060 
Profile Length for 4-gram 20080 21224 10666 14353 2915 13543 
Profile Length for 5-gram 34407 31732 15268 20533 3710 22492 
Profile Length for 6-gram 48462 41733 19338 26304 4411 31757 
Profile Length for 7-gram 61362 51561 22992 31697 5008 41190 
Profile Length for 8-gram 72791 61050 26122 36776 5533 50471 

 
Table 3 shows that, for example, author 1’s data allows for a profile length of 1949, while 
author 5’s data allows for a profile length of 767, when bigrams are extracted.  
 
Next, we created profile lengths for each author, for each n-gram length, at L equalling 200, 
500, 1000 and so forth as shown in Table 4. From these author profiles at different L lengths, 
we calculated both Relative Distance (RD) and Simplified Profile Intersection (SPI) between 
each known author profile and the test source code profile.  Table 4 allows us to compare the 
accuracy of RD and SPI, when we have different profile lengths and different n-gram lengths. 
Table 4 presents the results, demonstrating clearly that the Relative Distance method and the 
SCAP method are both capable of highly reliable results, with most authorial assignments 
being 100% accurate. 
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Table 4.  Classification accuracy (%) on the MacDonell C++ data set for different values 
of n-gram size and profile size using two similarity measures: Relative Distance and 
Simplified Profile Intersection. 

Profile 
Size L n-gram Size 

  2 3 4 5 6 7 8 
  RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI 
200 98.4 98.4 97.7 97.7 97 97 95.5 95.5 94.7 95.5 92.5 92.5 92.5 94.7
500 100 100 100 100 100 100 99.2 100 98.4 98.4 97.7 97.7 97.7 97.7
1000 51 99.2 100 100 100 100 100 100 100 100 100 100 99.2 99.2
1500 5.3 98.4 100 100 100 100 100 100 100 100 99.2 99.2 99.2 100 
2000 1.5 97.7 98.4 100 100 100 100 100 100 100 100 100 100 100 
2500 1.5 95.5 99.2 100 100 100 100 100 100 100 100 100 100 100 
3000 1.5 95.5 55.6 100 100 100 100 100 100 100 100 100 100 100 
 
Further, the results in Table 4 show that the SCAP method outperforms the RD method 
especially with bi-grams and profile lengths of 1000 or less. The RD and SPI results equalize 
with tri-grams and larger n-grams at the 1000 profile length. But, in most cases, for n<4 and 
L>1000 accuracy drops for the RD method.  
 
RD performs much worse than SPI in all cases where the compared author profile is shorter 
than the selected L profile length. For L=1000 and n=2, L is greater than the size of the profile 
of Author Number 5 (the maximum L of the profile of Author No 5 for n=2 is 769).  The 
accuracy rate declines to 51% using the RD similarity measure. This occurs because the RD 
similarity measure (1) is affected by the size of the author profile. When the size of an author 
profile is lower than L, some programs are wrongly classified to that author. In summary, we 
can conclude that the RD similarity measure is not as accurate for those n, L combinations 
where L exceeds the size of even one author profile in the dataset. In all cases, the accuracy 
using the SPI similarity measure is better than (or equal to) that of RD. This indicates that this 
new and simpler similarity measure included in SCAP approach is not affected by cases where 
L is greater than the smaller author profile. 
 
But the results of this experiment also demonstrate that Keselj et. al.’s (2003) RD method is 
indeed a reliable method for authorship identification of source code when the dataset allows 
for profile lengths greater than 1000 and n-grams greater than 4.  
 
 
 
Performance of RD and SPI on A Different Programming Language without Comments 
 
Since the source code used in malicious cyberattacks typically do not contain comments, the 
second experiment reported here examines the performance of SCAP on comment-free code 
and on a different programming language. We used the NoCom Java dataset as described 
earlier. 
 

www.ijde.org 10



International Journal of Digital Evidence                                 Spring 2007, Volume 6, Issue 1 

Table 5 shows that the SPI method consistently outperforms the RD method when the n-grams 
are less than seven characters long and the selected profile lengths are 500 n-grams or 
greater. Further, the best accuracy rates for SPI occur when the profile length is set at 2000.  
 
Table 5. Classification accuracy (%) on the NoComJava data set for different n-gram 
size, profile size and two similarity measures (Relative Distance or Simplified Profile 
Intersection) 

n-gram Size 

3 4 5 6 7 8 

Profile 
Size 
  
  RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI 
500 94 94 94 94 94 94 94 94 92 94 92 92 
1500 35 98 47 90 80 98 96 98 98 98 98 98 
2000 33 92 14 98 20 100 31 100 61 100 78 100 

 
In more detail, for L=500, when the n-gram ranges from three to eight consecutive characters, 
RD and SPI have (almost) identical performance. When L increases to 1500, the accuracy of 
RD drops for shorter n-grams, i.e., low values of n (n<6). When L increases to 2000, the 
accuracy of RD drops for all values of n. This happens because at least one author has an 
author profile shorter than the predefined value of L. Just as we saw in the first experiment, RD 
is not able to handle effectively cases in which an author’s profile is shorter than the predefined 
length of the profile for comparison. Note that the accuracy of SPI increases with L. This is a 
strong indication that the SPI similarity measure in SCAP suits the source code author 
identification problem well.  
 
 
5. Discussion and Future Work  
 
These experiments (as well as Frantzeskou’s other experiments) demonstrate that the n-gram 
approach is indeed a reliable method for authorship identification in computing languages, 
even though the approach was originally developed for natural languages. Our version of this 
approach, the SCAP method, performed consistently well on different programming languages 
and commented/commentless code. Compared to Keselj et. al.’s (2003) Relative Distance n-
gram method, the SCAP method includes a new simplified profile and a less-complicated 
similarity measure which better suit the characteristics of the source code authorship analysis 
problem. In particular the SCAP method can deal with cases where very limited training data 
per author is available (especially, when at least one author profile is shorter than the 
predefined profile size) and where the programs are free of comments (two conditions usually 
met in source code authorship analysis problems) with no significant compromise in 
performance. The experimental results presented here indicate that the best classification 
models are acquired for n-gram size 6 or 7 and profile size 1500 or 2000.  

 
Critics of the SCAP method, and any n-gram approach, can argue that the n-gram approach 
allows for a subjective, and potentially biased, selection of the n-gram size and the profile 
length. Critics, for example, might suggest that a biased forensic examiner could select a 
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particular n-gram size and profile length in order to obtain the authorship decision which is 
desired. Our response to this criticism is thus:  the SCAP method is currently semi-automated 
and therefore open to subjective manipulations. The extraction of n-grams and ranking is fully 
automated, but the choice of n-gram size and profile length is not and therefore open to 
subjective manipulations. The SCAP (or any n-gram) method can only be protected from 
unscrupulous and dishonest examiners by continued validation research and full automation 
which conceals these choices from examiners. More experiments have to be performed on 
various data sets in order to be able to define the most appropriate combination of n-gram size 
and profile size for a given problem. When this validation work is completed, a fully-automated 
system which cannot be manipulated will be available for forensic use. Meanwhile, digital 
forensic investigators who are independent of case advocacy and whose record of integrity 
supports their independence should certainly consider using the SCAP method given the 
current state of research. In fact, we think that a digital forensic investigator applying SCAP 
method should use a range of n-gram lengths and program lengths (such as shown in Tables 
4 and 5) and then relate his/her results to the validation results presented herein, until 
litigation-independent validation results allow us to decide the best combination of n-gram size 
and profile length for particular forensic problems. 
 
In future work we will present additional experimental results dealing with multiple candidate 
authors, the role of comments, coding tasks and collaborative programming. Further, the 
visualization of the stylistic properties of each author could be of major benefit in order to 
explain the differences between candidate source code authors. Finally, another line of 
research is the development of a statistical likelihood which we can attach to the yes/no 
classification results, since courts are not only interested in the accuracy rates of methods 
such as SCAP, but also the likelihood of a particular classification for a particular set of 
programs in a particular case. 
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Appendix 1: Copyright and Source Code 
 
Approaching these authorship problems through source code analysis is forensically feasible 
(as pointed out by Spafford and Weeber [18]), but also legally justifiable because, at least in 
the United States, source code is copyrightable. Copyright law in the United States, as it 
currently exists, was enacted by the United States Congress in 1976. Act of October 19, 1976 
Pub. L. No. 94-553 90 Stat. 2541, codified at Title 17 United States Code §§ 101 et. seq.  A 
creative work is copyrightable if it falls within the purview of 17 U.S.C. § 102(a) which states 
that, “[c]opyright protection subsists, in accordance with this title, in original works of 
authorship fixed in any tangible medium of expression, now known or later developed, from 
which they can be perceived, reproduced, or otherwise communicated, either directly or with 
the aid of a machine or device.”  Computer programs are not explicitly enumerated in the list of 
examples that follow this definition. 17 U.S.C. 102(a)(1-8)  Congress contemplated the 
authorship of computer programs as falling under the guise of “literary works” before adopting 
17 U.S.C. §§ 101 et. seq.  “The term ‘literary works’ does not connote any criterion of literary 
merit or qualitative value: it includes catalogs, directories, and similar factual, reference, or 
instructional works and compilations of data.  It also includes computer data bases, and 
computer programs to the extent that they incorporate authorship in the programmer's 
expression of original ideas, as distinguished from the ideas themselves.” H.R. Rep. No. 1476, 
94th Cong. 2d Sess. 54.  In a subsequent 1980 Amendment to 17 U.S.C § 101, “computer 
program” became defined as a “set of statements or instructions to be used directly or 
indirectly in a computer in order to bring about a certain result.”  However, despite the 
accounting of computer programs by Congress in 17 U.S.C. § 101 and later amendments, 
there was nothing specific mentioned in regard to source codes or other component building 
blocks of computer programs. 
 
Copyright law is a matter of federal law and jurisdiction in the United States. 18 U.S.C. § 1338  
As such, each federal circuit is free to establish precedent in interpreting copyright law so long 
as the interpretation is in accord with the language of the statute and the United States 
Constitution.  The most cited example of the extension of copyright protection to source codes 
comes from the Third Circuit.  Building off of its decision in Williams Electronics, Inc. v. Artic 
International, Inc., 685 F.2d 870 (3d Cir. 1982), which first established that the copyrightability 
of computer programs existed after the 1980 amendment to 17 U.S.C. § 101 in the Third 
Circuit, the court turned to evaluating the copyrightability of source codes in the seminal case 
of Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983), cert. 
dismissed 464 U.S. 1033 (1984).  Franklin Computer Corporation (“Franklin”) manufactured 
the ACE 100 computer which was designed to be compatible with the programs of the Apple II.  
Franklin copied Apple Computer Incorporated’s (“Apple”) operating system to achieve this 
compatibility.  Franklin did not contest that it copied the operating system; rather, it asserted 
that operating systems are not copyrightable.  In rejecting this argument, the court maintained 
that “[c]omputer programs can be categorized by function into either application programs or 
operating systems programs.” Id. at 1243. Further, these programs originate from “three levels 
of computer language:”  
  [1] High level language, such as the commonly used BASIC or FORTRAN, uses 
English words and symbols, and is relatively easy to learn and understand (e.g., "GO TO 40" 
tells the computer to skip intervening steps and go to the step at line 40).   
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  [2] A somewhat lower level language is assembly language, which consists of 
alphanumeric labels (e.g., "ADC" means "add with carry"). . .  
  [3] [the] lowest level computer language, is machine language, a binary language 
using  two symbols, 0 and 1, to indicate an open or closed switch (e.g., "01101001" means, to 
the Apple, add two numbers and save the result). Id.  “The statements in high level language, 
and apparently also statements in assembly language, are referred to as written  in ‘source 
code’. Statements in machine language are referred to as written in ‘object code’.” Id.   
 
The determination that source codes, in addition to computer programs generally, are 
copyrightable, was essential for Apple’s success.  Franklin argued that operating system 
programs were distinguishable from application programs because the operating system 
constituted a “process, method, or system of operation,” which is considered to be too broad of 
a subject matter to be copyrightable. Baker v. Selden, 101 U.S. 99 (1879).  Additionally, 
Franklin relied on Mazer v. Stein, 347 U.S. 201 (1954), which draws a line between the 
copyright of expression and ideas.  Copyright protection “is given only to the expression of the 
idea--not the idea itself."  Id. at 217.  This dichotomy is now expressed in 17 U.S.C. § 102(b).  
Franklin wanted to argue that the operating system of a computer is not copyrightable as it is 
necessary function that can only be expressed in a particular way.  The Third Circuit answered 
the threshold question of “[i]f other programs can be written or created which perform the same 
function as an Apple's operating system program, then that program is an expression of the 
idea and hence copyrightable,” in the affirmative.  Apple, 714 F.2d at 1253.  Consequently, 
despite the different function of operating systems and application programs, the computer 
programs are still based on source and object codes which properly fall within the 
contemplation of “literary works.”1   
 
Once a subject matter is deemed copyrightable, the author of the subject matter retains 
exclusive rights to that subject matter.  17 U.S.C. § 106.  Copyright infringement occurs when 
“[a]nyone who violates any of the exclusive rights of the copyright owner as provided by 
sections 106 through 122…[is] an infringer of the copyright or right of the author, as the case 
may be.” 17 U.S.C. § 501(a).  If “anyone” is found to be an infringer, monetary damages or 
injunctions from using the copyrighted material may follow.  Cases, such as the one discussed, 
as well as cases in each of the other federal circuits, which establish the copyrightability of the 
source and object codes of a computer program through an interpretation of 17 U.S.C. § 
102(a), are referred to as “first generation” cases.  Each federal circuit to date has held that a 
computer programs and source codes are “literary works” for purposes of copyright.2   
 
However, what remains divergent among the federal circuits are the number of tangential 
issues currently being litigated which constitute “second generation” cases.  Although too 
extensive for purposes of the present discussion, it is worth mentioning the “second 
generation” cases.  “Second generation” cases focus on: 1) which elements of computer 

                                                                 
1 In addition to the subject matter being an “original work of authorship” for purposes of determining copyrightability, the subject matter 

must be “fixed in [a] tangible medium of expression.” 17 U.S.C. § 102(a).  In Apple, the court firmly established that “a computer 
program in object code embedded in a ROM chip is an appropriate subject of copyright.” Apple, 714 F.2d at 1249. 

2 It is also largely accepted on the international level that computer programs are copyrightable, see generally, Article 4 of the World 
Intellectual Property Organization (WIPO) “[c]omputer programs are protected as literary works within the meaning of Article 2 of the 
Berne Convention. (1971) Such protection applies to computer programs, whatever may be the mode or form of their expression.” 
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programs are copyrightable; 2) what should the scope of protection be in infringement actions; 
3) is there copyright protection of computer screen display formats (see generally, Computer 
Associates International, Inc. v. Altai Inc., 982 F.2d 698 (2d Cir. 1992) and Lotus Development 
Corp. v. Borland International, Inc., 49 F.3d 807 (1st Cir. 1995)); 4) reverse engineering (see 
generally, Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1993); Atari Games 
Inc. v. Nintendo of America, Inc., 975 F.2d 832 (Fed. Cir. 1992); and Sony Computer 
Entertainment Inc. v. Connectix Corp., 203 F.3d 596 (9th Cir. 2000); and 5) microcodes (see 
generally, Syntek Semiconductor Co. v. Microship Technology, Inc., 307 F.3d 775 (9th Cir. 
2002).  These cases will take time to resolve.3  For the time being, it is certainly clear that 
source codes are copyrightable, source codes are subject to infringement actions for improper 
use, and that identification of source code authorship can and should be presented as reliable 
and admissible digital evidence.  
 
 

                                                                 
3 It should be noted that copyright is but one protection that could potentially be extended to source codes.  However, alternative 

protections of patent, trade secret, and licensing agreements, tend to focus more on the finished product rather than the determination of 
source code. 
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