
International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

Identifying Authorship by Byte-Level N-Grams:
The Source Code Author Profile (SCAP) Method

Georgia Frantzeskou
Efstathios Stamatatos

Stefanos Gritzalis
Laboratory of Information and Communication Systems Security

Department of Information and Communication Systems Engineering
University of the Aegean

Carole E. Chaski, PhD

Blake Stephen Howald, JD
Institute for Linguistic Evidence, Inc

Abstract

Source code author identification deals with identifying the most likely author of a computer
program, given a set of predefined author candidates. There are several scenarios where
digital evidence of this kind plays a role in investigation and adjudication, such as code
authorship disputes, intellectual property infringement, tracing the source of code left in the
system after a cyber attack, and so forth. As in any identification task, the disputed program is
compared to undisputed, known programming samples by the predefined author candidates.
We present a new approach, called the SCAP (Source Code Author Profiles) approach, based
on byte-level n-gram profiles representing the source code author’s style. The SCAP method
extends a method originally applied to natural language text authorship attribution; we show
that an n-gram approach also suits the characteristics of source code analysis. The
methodological extension includes a simplified profile and a less complicated, but more
effective, similarity measure. Experiments on data sets of different programming-language
(Java or C++) and commented/commentless code demonstrate the effectiveness of these
extensions. The SCAP approach is programming-language independent. Moreover, the SCAP
approach deals surprisingly well with cases where only a limited amount of very short
programs per programmer is available for training. Finally, it is also demonstrated that SCAP
effectiveness persists even in the absence of comments in the source code, a condition
usually met in cyber-crime cases.

1. The Forensic Significance of Source Code

Nowadays, in a wide variety of legal cases it is important to identify the author of a usually
limited piece of programming code. Such situations include cyber attacks in the form of
viruses, Trojan horses, logic bombs, fraud, and credit card cloning, code authorship disputes,
and intellectual property infringement. Identifying the authorship of malicious or stolen source
code in a reliable way has become a primary goal for digital investigators (Spafford and
Weeber 1993). Please see Appendix 1 for a legal analysis of the forensic significance of
source code.

www.ijde.org

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

In this paper we present a new approach, which we call the SCAP (Source Code Author
Profiles) method, based on byte-level n-gram –or sequential slicing– profiles representing the
source code author’s style. The SCAP method extends an approach originally applied to
natural language text authorship attribution by Keselj et. al. (2003). We show that the n-gram
approach also suits the characteristics of source code analysis. Our methodological extension
includes a simplified profile and a less complicated but more effective similarity measure.
Although Frantzeskou’s doctoral research includes numerous experiments which test SCAP
under multiple forensically-significant conditions, in this article we present only two
experiments. These experiments show that the SCAP method functions well on different
programming languages, deals surprisingly well with cases where only a limited amount of very
short programs per programmer is available for training, and performs well even in the
absence of comments in the source code, a condition usually met in cyber-crime cases.

The rest of this paper is organized as follows. Section 2 contains a brief review of relevant
research in the area of authorship attribution, focusing on Keselj et. al.’s (2003) method.
Section 3 describes our approach. Section 4 presents the results two experiments using
SCAP. Finally, section 5 discusses the forensic application of SCAP and our research agenda
for future work.

2. Related Work in Computing and Natural Language Authorship

The general methodology of authorship attribution applies to both natural and computing
languages. Although source code is much more grammatically restrictive than natural
languages, there is still a large degree of flexibility when writing a program (Krsul and Spafford
1996).

Computational authorship attribution methodology for both natural and computing languages
requires two main steps (Krsul and Spafford 1995; Chaski 1997, 2005; MacDonell and Gray
2001, Ding and Samadzadeh 2004). The first step is the extraction of variables representing
the author’s style. Ideally, authorial features should have low within-author variability, and high
between-author variability (Krsul and Spafford 1996, Kilgour, Gray, Sallis and MacDonell 1997,
Chaski 1997). The second step is applying a statistical or machine learning algorithm to these
variables in order to develop models that are capable of discriminating between several
authors. Defining the variables and discovering the best classification algorithm for the defined
variables is a difficult, empirical task, but it is feasible and prevents subjective pronouncements
which are no longer considered by courts to be acceptable scientific forensic evidence (Chaski
1997, 2005).

Authorship Attribution Methods for Computing Languages

In general, when authorship attribution methods have been developed for computing
languages, the suggested software features are programming language-dependent and
require either computational cost or hand-coding for their calculation. The main focus of the
previous work was the definition of the most appropriate features for representing the style of
an author (Oman and Cook 1989; Longstaff and Shultz 1993; Spafford and Weeber 1993;

www.ijde.org 2

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

Sallis, et. al. 1996). For author identification in computing languages, proposed metrics have
included, for example, indentation, placement of comments, placement of braces, character
preferences, construct preferences, statistical distribution of variable lengths and function
name lengths, statistical distribution of lines of code per function, ratio of keywords per lines of
code, spelling errors, the degree to which code and comments match, and whether identifiers
used are meaningful. This list shows that many of the previously proposed features either
cannot be measured objectively in any source code program (a condition which also plagued
natural language authorship identification methods, until very recently) or require hand-coding.

Krsul and Spafford (1995) developed a software analyzer program to automate the coding of
software metrics. The software analyzer extracted layout, style and structure features from 88
C programs belonging to 29 known authors. A tool was developed to visualize the metrics
collected and help select those metrics that exhibited little within-author variation, but large
between-author variation. Discriminant function analysis was applied on the chosen subset of
metrics to classify the programs by author. The experiment achieved 73% overall accuracy.

MacDonell and his colleagues (Kilgour, Gray, Sallis and MacDonell 1997; Gray, Sallis and
MacDonell 1998; MacDonell and Gray 2001) have automated authorship identification of
computer programs written in C++. Gray, Sallis and MacDonell 1998 developed a dictionary-
based system called IDENTIFIED (Integrated Dictionary-based Extraction of Non-language-
dependent Token Information for Forensic Identification, Examination, and Discrimination) to
extract source code metrics for authorship analysis. In MacDonell and Gray’s 2001 work,
satisfactory results were obtained for C++ programs using case-based reasoning, feed-forward
neural network, and multiple discriminant analysis. The best prediction accuracy – at 88% for 7
different authors-- was achieved using Case-Based Reasoning.

Focusing on Java source code, Ding and Samadzadeh (2004) investigated the extraction of a
set of software metrics that could be used to identify the author. A set of 56 metrics of Java
programs was proposed for authorship analysis. The contributions of the selected metrics to
authorship identification were measured by canonical discriminant analysis. Forty-six groups of
programs were diversely collected. They achieved a classification accuracy of 87.0% with the
use of canonical variates.

This brief review of previous work reveals four criteria for our own research agenda. First,
metrics selection is not a trivial process and usually involves setting thresholds to eliminate
those metrics that contribute little to the classification model. Second, some of the metrics are
not readily extracted automatically because they involve subjective judgments. Third, many
software metrics are programming-language dependent. For example, metrics useful for Java
programs cannot be used for examining C or Pascal programs. Fourth, even with automated
feature extraction and analysis, the classification accuracy rates do not reach 90%.

In sum, the previous work in author identification of programming code has suffered from
language-dependence, manual coding of subjective features and accuracy rates below 90%.
In this context, our goal is to provide a fully-automated, language-independent method with
high reliability for distinguishing authors and assigning programs to programmers. Can recent

www.ijde.org 3

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

computational approaches in natural language author identification provide assistance in
reaching our goal?

Authorship Attribution Methods for Natural Language

For natural language texts, authorship puzzles have engaged scholars in a wide range of
disciplines, from literature (Elliot and Valenza 1991), linguistics (Chaski 1997, 2004, 2005) and
computer science (Keselj et. al. 2003, Peng et. al. 2004, Stamatatos et. al. 2000). Recently, a
number of computational authorship attribution approaches have been presented (Peng et. al.
2004, Stamatatos et. al. 2000, O’Brien and Vogel 2003, Chaski 2005) proving that the author
of a natural language text can be reliably identified with methods which focus on syntactic,
lexical and character-level variables using classification procedures such as naïve Bayes, chi
by degrees of freedom, and discriminant function analysis.

The SCAP method extends Keselj et. al.’s 2003 work, so it is important to describe this
particular method. In Keselj et. al.’s 2003 work, the text is decomposed into character-level n-
grams (using a Perl text processing program by Keselj 2003). An n-gram is an n-contiguous
sequence and can be defined on the byte, character, or word level. Byte, character and word
n-grams have long been used in a variety of applications such as speech recognition,
language identification, context sensitive spelling correction, optical character recognition etc.
For the Roman alphabet’s 26 graphemes, 676 character-level bi-grams are thus possible,
although not all of these possible bi-grams will be instantiated in any given text due to the
phonotactic constraints of any particular natural of programming language; for instance,
English permits [xa] as in [Xavier] but not [xb], although the bi-gram [xb] may occur in a
mathematical equation or programming variable name.

Keselj et. al. (2003) defines an author profile as “a set of length L of the most frequent n-grams
with their normalized frequencies.” The profile of an author is, then, the ordered set of pairs
{(x1; f1); (x2; f2),…,(xL; fL)} of the L most frequent n-grams xi and their normalized frequencies fi.
Keselj et. al. (2003) determine authorship based on the dissimilarity between two profiles,
comparing the most frequent n-grams. Identical texts will obviously have an identical set of L
most frequent bi-grams, and thus have zero dissimilarity. Different texts will be more or less
similar to each other, based on the amount of most-frequent bi-grams which they share. It is
important to note that the normalized frequencies constitute the author profile in Keselj et. al.’s
2003 approach.

The original dissimilarity measure used by Keselj et. al. (2003) in text authorship attribution is a
form of relative distance:

)1(
)()(

))()((2)()(
2

21

21
2

2
)(2)(1

21 ∑∑
∈∈

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ +

−−
=

profilenprofilen
nfnf nfnf

nfnfnfnf

where f1(n) and f2(n) are either the normalized frequencies of an n-gram n in the two compared
texts or 0 if the n-gram does not exist in the text(s). A text is classified to the author whose

www.ijde.org 4

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

profile has the minimal distance from the text profile, using this measure. Hereafter, this
distance measure will be called Relative Distance (RD).

3. The Scap Method

In this paper, we present the SCAP (Source Code Author Profiles) approach, which is an
extension of a method that has been successfully applied to text authorship identification by
Peng et. al. (2004). As in Keselj et. al.’s 2003 work, a profile for each author is developed from
the frequency rank of n-grams and a similarity measure is used to classify a program to an
author. But the SCAP method differs from the Keselj approach in two ways: first, we use the
raw frequencies of the byte-level n-grams, and second, we use a simple, overlap measure for
classification. The procedure is explained in the following steps.

• Step 1. Divide the known source code programs into training and testing data.
• Step 2. Concatenate all the programs in the training set into one large file. Leave the

testing data programs in their own files.
• Step 3. For each author training and testing file, get the author profile:

o Step 3.1. Extract the n-grams at the byte-level, including all non-printing
characters. All characters, even the non-printable, such as spaces, tabs, new
line characters are included in the extraction of the n-grams.

o Step 3.2. Get the frequency for each n-gram type.

In our analyses, Keselj’s (2003) Perl package Text::N-grams has been used to produce n-gram
tables for each file or set of files that is required. An example of such a table is given in Table
1A. The first column contains the n-grams found in a source code file and the second column
the corresponding frequency of occurrence.

Table 1A. N-gram Frequencies Extracted From a Source Code File
3-gram Frequency
sio 28
_th 28
f_(20
= 17
usi 16
_ms 16
out 15
ine 15
\n/* 15
on_ 14
_in 14
fp_ 14
the 14
sg_ 14
i 14
in_ 14

www.ijde.org 5

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

The n-grams are ranked by frequency, in descending order, so that the most frequently-
occurring n-grams are listed first.

o Step 3.3. List the n-gram types in descending frequency, so the most frequent
are listed first.

This is the author profile. The author profile will have varying lengths depending on the
length (in terms of characters) of the programming data and the length of the n-gram. Keep
a record of each author's profile length for each n-gram length, such as shown in Table 1B.

Table 1B. Example of Varying Length of Author Profile for Varying N-Grams
 bigram trigram 4-gram 5-gram 6-gram 7-gram
author 1 250 400 650 890 1000 1300
author 2 475 680 980 1200 1700 1982
test
document

100 223 447 589 793 874

Unlike Keselj et. al.’s approach, SCAP does not use the normalized frequencies of the n-
grams. Hence the profile we propose is a Simplified Profile (SP). The SP is the set of the L
most frequent n-grams {x1, x2,…,xL}, when they are ranked by descending frequency. The
actual frequency is not used mathematically except for ranking the n-grams. The length L of
the profile is discussed below.

• Step 4. For each test file, compare its profile to each author using the SPI measure:
o Step 4.1. Select a specific n-gram length, such as trigram (or 6-gram or

whatever).
o Step 4.2. Select a specific profile length at which to cut off the author profile.

For instance, given the data in Table 1B, if we select trigram and profile length of 500,
when we compare author 1 to author 2, we will use all of author 1's trigrams but we will use
only the first 500 most frequent trigrams from author 2. Author 1’s profile only contains 400
trigrams, so all of author 1’s profile is included in the comparison process. Author 2’s profile
contains 680 trigrams, so only the first 500 most frequent trigrams are included in the
comparison process. Setting the Profile Length at 500 means that we cut off the profile at
that specified length, regardless of how many trigrams occur in a particular author’s profile
beyond that specified length.

o Step 4.3. For each pair of test and known author profiles, create the
Simplified Profile Intersection.

Letting SPA and SPP be the simplified profiles of one known author and test or disputed
program, respectively, then the similarity distance is given by the size of the intersection of
the two profiles:

)2(PA SPSP ∩
In other words, the similarity measure we propose is the amount of common n-grams in the
profiles of the test case and the author.

www.ijde.org 6

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

o Step 4.4. Classify the test document to the author whose profile at the
specified length has the highest number of common n-grams with the test
document profile at the specified length. The test document is classified to the
author with whom we achieved the largest amount of intersection. We have
developed a number of perl scripts in order to create the sets of n-gram tables
for the different values of n (i.e., n-gram length), L (i.e., profile length) and for
the classification of the program file to the author with the smallest distance
(i.e., greatest overlap).

By shifting the n-gram length and the profile length (or cut-off, or number of n-gram types
included in the SPI), we can test how accurate the method is under different conditions, as
shown in the following experimental results.

One of the inherent advantages of this approach is that it is language independent since it is
based on low-level information. As a result, it can be applied with no additional cost to data
sets where programs are written in C++, Java, perl etc. Moreover, it does not require multiple
training examples from each author, since it is based on one profile per author. The more
source code programs available for each author, the longer the profile lengths can be selected,
and, as will be seen in the following experiments, the more reliable the author profile.

4. The Data Sets and Experimental Results

We present two experiments from Frantzeskou’s doctoral research. Each experiment uses a
different programming language in order to test SCAP’s language independence. In each
experiment, some authors are represented by very few samples and very short programs. The
second experiment uses data which includes no comments.

Table 2 shows the data sets used in this study. The first dataset “MacDonell C++” contains
C++ programs which have previously been used in authorship analysis by MacDonell and his
colleagues. The second dataset “NoCom Java” contains Java programs which were
downloaded from the website freshmeat.net as open source programs. These files were
stripped of any comments.

In Table 2, “Programs per author” is expressed by the minimum and maximum number of
program samples per author in the data set. Program sample length is expressed by the
average Lines Of Code (LOC).

www.ijde.org 7

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

Table 2. Data Sets
 MacDonell

C++
NoCom
Java

Number of Authors 6 8
Samples per
Author

5-114 4-29

Total Samples 268 107
Training Set
Samples

134 56

Testing Set
Samples

133 51

Size of smallest
sample (LOC)

19 10

Size of biggest
sample (LOC)

1449 639

Mean LOC in
Training Set

206.4 122.28

Mean LOC in
Test Set

213 95.92

Mean LOC/sample 210 109.1
Used in Experiment 1 2

Comparison of Relative Distance and Simplified Profile Intersection on MacDonell Data

Our purpose in this experiment was to check that the SCAP works at least equally as well as
the previous methodologies for source code author identification. As mentioned earlier,
MacDonell et. al. (2001) reported the best result, using the case-based reasoning (that is, a
memory-based learning) algorithm, for classification accuracy at 88%.

The MacDonell data set was split (as equally as possible) into the training set (134 programs)
and the test set (133 programs). We ran the aforementioned perl programs to extract n-grams
from two to eight consecutive byte-level characters. For each of the six authors in the
MacDonell dataset, we calculated the possible profile lengths; these are shown in Table 3.

www.ijde.org 8

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

 Table 3. Profile Lengths of Six Authors in MacDonell Dataset
Author 1 2 3 4 5 6
Profile Length for bigram 1949 2391 1580 2219 767 1522
Profile Length for trigram 8487 12687 5778 7815 1893 6060
Profile Length for 4-gram 20080 21224 10666 14353 2915 13543
Profile Length for 5-gram 34407 31732 15268 20533 3710 22492
Profile Length for 6-gram 48462 41733 19338 26304 4411 31757
Profile Length for 7-gram 61362 51561 22992 31697 5008 41190
Profile Length for 8-gram 72791 61050 26122 36776 5533 50471

Table 3 shows that, for example, author 1’s data allows for a profile length of 1949, while
author 5’s data allows for a profile length of 767, when bigrams are extracted.

Next, we created profile lengths for each author, for each n-gram length, at L equalling 200,
500, 1000 and so forth as shown in Table 4. From these author profiles at different L lengths,
we calculated both Relative Distance (RD) and Simplified Profile Intersection (SPI) between
each known author profile and the test source code profile. Table 4 allows us to compare the
accuracy of RD and SPI, when we have different profile lengths and different n-gram lengths.
Table 4 presents the results, demonstrating clearly that the Relative Distance method and the
SCAP method are both capable of highly reliable results, with most authorial assignments
being 100% accurate.

www.ijde.org 9

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

Table 4. Classification accuracy (%) on the MacDonell C++ data set for different values
of n-gram size and profile size using two similarity measures: Relative Distance and
Simplified Profile Intersection.

Profile
Size L n-gram Size

 2 3 4 5 6 7 8
 RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI
200 98.4 98.4 97.7 97.7 97 97 95.5 95.5 94.7 95.5 92.5 92.5 92.5 94.7
500 100 100 100 100 100 100 99.2 100 98.4 98.4 97.7 97.7 97.7 97.7
1000 51 99.2 100 100 100 100 100 100 100 100 100 100 99.2 99.2
1500 5.3 98.4 100 100 100 100 100 100 100 100 99.2 99.2 99.2 100
2000 1.5 97.7 98.4 100 100 100 100 100 100 100 100 100 100 100
2500 1.5 95.5 99.2 100 100 100 100 100 100 100 100 100 100 100
3000 1.5 95.5 55.6 100 100 100 100 100 100 100 100 100 100 100

Further, the results in Table 4 show that the SCAP method outperforms the RD method
especially with bi-grams and profile lengths of 1000 or less. The RD and SPI results equalize
with tri-grams and larger n-grams at the 1000 profile length. But, in most cases, for n<4 and
L>1000 accuracy drops for the RD method.

RD performs much worse than SPI in all cases where the compared author profile is shorter
than the selected L profile length. For L=1000 and n=2, L is greater than the size of the profile
of Author Number 5 (the maximum L of the profile of Author No 5 for n=2 is 769). The
accuracy rate declines to 51% using the RD similarity measure. This occurs because the RD
similarity measure (1) is affected by the size of the author profile. When the size of an author
profile is lower than L, some programs are wrongly classified to that author. In summary, we
can conclude that the RD similarity measure is not as accurate for those n, L combinations
where L exceeds the size of even one author profile in the dataset. In all cases, the accuracy
using the SPI similarity measure is better than (or equal to) that of RD. This indicates that this
new and simpler similarity measure included in SCAP approach is not affected by cases where
L is greater than the smaller author profile.

But the results of this experiment also demonstrate that Keselj et. al.’s (2003) RD method is
indeed a reliable method for authorship identification of source code when the dataset allows
for profile lengths greater than 1000 and n-grams greater than 4.

Performance of RD and SPI on A Different Programming Language without Comments

Since the source code used in malicious cyberattacks typically do not contain comments, the
second experiment reported here examines the performance of SCAP on comment-free code
and on a different programming language. We used the NoCom Java dataset as described
earlier.

www.ijde.org 10

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

Table 5 shows that the SPI method consistently outperforms the RD method when the n-grams
are less than seven characters long and the selected profile lengths are 500 n-grams or
greater. Further, the best accuracy rates for SPI occur when the profile length is set at 2000.

Table 5. Classification accuracy (%) on the NoComJava data set for different n-gram
size, profile size and two similarity measures (Relative Distance or Simplified Profile
Intersection)

n-gram Size

3 4 5 6 7 8

Profile
Size

 RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI
500 94 94 94 94 94 94 94 94 92 94 92 92
1500 35 98 47 90 80 98 96 98 98 98 98 98
2000 33 92 14 98 20 100 31 100 61 100 78 100

In more detail, for L=500, when the n-gram ranges from three to eight consecutive characters,
RD and SPI have (almost) identical performance. When L increases to 1500, the accuracy of
RD drops for shorter n-grams, i.e., low values of n (n<6). When L increases to 2000, the
accuracy of RD drops for all values of n. This happens because at least one author has an
author profile shorter than the predefined value of L. Just as we saw in the first experiment, RD
is not able to handle effectively cases in which an author’s profile is shorter than the predefined
length of the profile for comparison. Note that the accuracy of SPI increases with L. This is a
strong indication that the SPI similarity measure in SCAP suits the source code author
identification problem well.

5. Discussion and Future Work

These experiments (as well as Frantzeskou’s other experiments) demonstrate that the n-gram
approach is indeed a reliable method for authorship identification in computing languages,
even though the approach was originally developed for natural languages. Our version of this
approach, the SCAP method, performed consistently well on different programming languages
and commented/commentless code. Compared to Keselj et. al.’s (2003) Relative Distance n-
gram method, the SCAP method includes a new simplified profile and a less-complicated
similarity measure which better suit the characteristics of the source code authorship analysis
problem. In particular the SCAP method can deal with cases where very limited training data
per author is available (especially, when at least one author profile is shorter than the
predefined profile size) and where the programs are free of comments (two conditions usually
met in source code authorship analysis problems) with no significant compromise in
performance. The experimental results presented here indicate that the best classification
models are acquired for n-gram size 6 or 7 and profile size 1500 or 2000.

Critics of the SCAP method, and any n-gram approach, can argue that the n-gram approach
allows for a subjective, and potentially biased, selection of the n-gram size and the profile
length. Critics, for example, might suggest that a biased forensic examiner could select a

www.ijde.org 11

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

particular n-gram size and profile length in order to obtain the authorship decision which is
desired. Our response to this criticism is thus: the SCAP method is currently semi-automated
and therefore open to subjective manipulations. The extraction of n-grams and ranking is fully
automated, but the choice of n-gram size and profile length is not and therefore open to
subjective manipulations. The SCAP (or any n-gram) method can only be protected from
unscrupulous and dishonest examiners by continued validation research and full automation
which conceals these choices from examiners. More experiments have to be performed on
various data sets in order to be able to define the most appropriate combination of n-gram size
and profile size for a given problem. When this validation work is completed, a fully-automated
system which cannot be manipulated will be available for forensic use. Meanwhile, digital
forensic investigators who are independent of case advocacy and whose record of integrity
supports their independence should certainly consider using the SCAP method given the
current state of research. In fact, we think that a digital forensic investigator applying SCAP
method should use a range of n-gram lengths and program lengths (such as shown in Tables
4 and 5) and then relate his/her results to the validation results presented herein, until
litigation-independent validation results allow us to decide the best combination of n-gram size
and profile length for particular forensic problems.

In future work we will present additional experimental results dealing with multiple candidate
authors, the role of comments, coding tasks and collaborative programming. Further, the
visualization of the stylistic properties of each author could be of major benefit in order to
explain the differences between candidate source code authors. Finally, another line of
research is the development of a statistical likelihood which we can attach to the yes/no
classification results, since courts are not only interested in the accuracy rates of methods
such as SCAP, but also the likelihood of a particular classification for a particular set of
programs in a particular case.

© Copyright 2007 International Journal of Digital Evidence

Acknowledgments

We would like to thank Dr Steve MacDonell, Dr Panayotis Adamidis and Mr Efthimios
Kotsialos.for supplying the student programs we used in this paper.

About the Authors

Georgia Frantzeskou is currently pursuing a Ph.D. in Software Forensics at the Department
of Information and Communication Systems Engineering, University of the Aegean, Greece.
She holds a B.Sc. in Mathematics from the University of Athens and a M.Sc. in Computer
Science from Aston University, Birmingham UK. During her 10 year long career in the IT
industry in Greece and UK, she has been involved in a number of different roles and projects.
Some of the projects she has worked on include, the London AirTraffic Control System, Office
Automation Systems, Customer Care Systems etc. Her research interests are in the fields of
Software Forensics, Software Metrics, and Machine Learning Techniques. gfran@aegean.gr

www.ijde.org 12

mailto:gfran@aegean.gr

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

Dr. Efstathios Stamatatos is a lecturer of the Information and Communication Systems
Engineering Department at the University of the Aegean, Greece. He received the Diploma
degree in Electrical Engineering and the Ph.D. in Electrical and Computer Engineering, both
from the University of Patras, Greece. He was a research associate of the Wire
Communications Lab. of the University of Patras from 1995 to 2003. He also joined the
Polytechnic University of Madrid as a Visiting Researcher, the Austrian Research Institute for
Artificial Intelligence as a Post-doc researcher, and he was an Adjunct Professor of the Dept.
of Audio and Musical Instruments Technology, TEI of Ionian Islands. stamatatos@aegean.gr

Prof. Stefanos Gritzalis is an Associate Professor, the Head of the Department of Information
and Communication Systems Engineering, at the University of the Aegean, Greece, and the
Director of the Laboratory of Information and Communication Systems Security. He has been
involved in several national and EU funded R&D projects in the areas of Information and
Communication Systems Security. His published scientific work includes several books on
Information and Communication Technologies topics, and more than 130 journal and national
and international conference papers. The focus of these publications is on Information and
Communication Systems Security. He is a member of the ACM and the IEEE. Since 2006 he
is a member of the “IEEE Communications and Information Security Technical Committee” of
the IEEE Communications Society, and of the “IFIP WG 11.6 Identity Management.”
sgritz@aegean.gr

Dr. Carole E. Chaski is the President of ALIAS Technology LLC, a provider of forensic
computational linguistics services to the legal, law enforcement, security and defense
communities and the Executive Director of the Institute for Linguistic Evidence, a non-profit
research organization dedicated to validating methods in forensic linguistics. She is also an
adjunct professor of linguistics at the University of Delaware and previously was on the
faculties at North Carolina State University and the University of South Carolina, after earning
her Ph.D. in Linguistics at Brown University. Her publications focus on empirical results of
validating forensic linguistic methods. She is an active member of the American Academy of
Forensic Sciences (Engineering Sciences), the International Association of Forensic Linguists,
Law and Society Association and the “IFIP WG 11.9 Digital Forensics.”

Blake S. Howald is currently pursuing a Ph.D. in Linguistics at Georgetown University, having
previously earned his JD at Detroit Mercy School of Law and B.A. in Linguistics at the
University of Pittsburgh. He is a Research Associate of the Institute for Linguistic Evidence. He
authored the appendix on the legal significance of source code for this article, and generally
writes on legal strategies for using linguistic evidence.

REFERENCES

1. Bennett, W. R. (1976). Scientific and engineering problem-solving with the computer.

Englewood Cliffs, New Jersey: Prentice-Hall, Inc..

www.ijde.org 13

mailto:stamatatos@aegean.gr
mailto:sgritz@aegean.gr

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

2. Chaski, C.E. (1997). “Who wrote it? Steps toward a Science of Authorship Identification.”
National Institute of Justice Journal, pp. 15-22. September. Also available through
www.ncjrs.org.

3. Chaski, C.E. (2004). “The syntactic analysis method of author identification.” National

Institute of Justice Research Committee, American Academy of Forensic Sciences
Annual Meeting. Dallas, Texas,USA.

4. Chaski, C.E. (2005). “Who’s At the Keyboard? Recent results in authorship attribution.”

International Journal of Digital Evidence, Volume 4:1, Spring. Available at www.ijde.org.

5. Ding, H., Samadzadeh, M., H., (2004). “Extraction of Java program fingerprints for software

authorship identification.” The Journal of Systems and Software, Volume 72, Issue 1,
Pages 49-57 June.

6. Elliot, W., and. Valenza, R.(1991). “Was the Earl of Oxford The True Shakespeare?” Notes

and Queries, 38:501-506.

7. Gray, A., Sallis, P., and MacDonell, S. (1998). “IDENTIFIED (integrated dictionary-based

extraction of non-language-dependent token information for forensic identification,
examination, and discrimination): A dictionary-based system for extracting source code
metrics for software forensics.” In Proceedings of SE:E&P’98 (Software Engineering:
Education and Practice Conference), IEEE Computer Society Press, pages 252–259.

8. Gray, A., Sallis, P., and MacDonell, S. (1997). “Software forensics: Extending authorship

analysis techniques to computer programs.” In Proc. 3rd Biannual Conf. Int. Assoc. of
Forensic Linguists (IAFL'97), pages 1-8.

9. Frantzeskou, G., Gritzalis, S., MacDonell, S. (2004). “Source Code Authorship Analysis for

supporting the cybercrime investigation process.” In Proc. 1st International Conference
on e-business and Telecommunications Networks (ICETE04), Vol 2, pages (85-92),
2004.

10. Keselj, V., Peng, F., Cercone, N., Thomas, C. (2003). “N-gram based author profiles for

authorship attribution.” In Proc. Pacific Association for Computational Linguistics.

11. Keselj, V. (2003). Perl package Text::N-grams http://www.cs.dal.ca/~vlado/srcperl/N-

grams or http://search.cpan.org/author/VLADO/Text-N-grams-0.03/N-grams.pm.

12. Kilgour, R. I., Gray, A.R., Sallis, P. J., and MacDonell, S. G. (1997). “A Fuzzy Logic

Approach to Computer Software Source Code Authorship Analysis.” Accepted for The
Fourth International Conference on Neural Information Processing -- The Annual
Conference of the Asian Pacific Neural Network Assembly (ICONIP'97). Dunedin. New
Zealand.

www.ijde.org 14

http://www.ncjrs.org/
http://www.ijde.org/
http://www.cs.dal.ca/~vlado/srcperl/Ngrams
http://www.cs.dal.ca/~vlado/srcperl/Ngrams
http://search.cpan.org/author/VLADO/Text-Ngrams-0.03/Ngrams.pm

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

13. Krsul, I., and Spafford, E. H. (1995). “Authorship analysis: Identifying the author of a
program.” In Proc. 8th National Information Systems Security Conference, pages 514-
524, National Institute of Standards and Technology.

14. Krsul, I., and Spafford, E. H. (1996). “Authorship analysis: Identifying the author of a

program.” Technical Report TR-96-052.

15. Longstaff, T. A., and Schultz, E. E. (1993). “Beyond Preliminary Analysis of the WANK and

OILZ Worms: A Case Study of Malicious Code.” Computers and Security, 12:61-77.

16. MacDonell, S.G, and Gray, A.R. (2001). “Software forensics applied to the task of

discriminating between program authors.” Journal of Systems Research and Information
Systems 10: 113-127.

17. O’Brian, C. and Vogel, C. (2003). “A Forensic Examination of “A Funerall Elegy.” Technical

Report.

18. Oman, P., and Cook, C., (1989). “Programming style authorship analysis”. In Seventeenth

Annual ACM Science Conference Proceedings, pages 320–326. ACM.

19. Peng, F., D., Shuurmans, and S., Wang. (2004). “Augmenting naive Bayes classifiers with

statistical language models.” Information Retrieval Journal, 7(1): 317-345.

20. Sallis P., Aakjaer, A., and MacDonell, S. (1996). “Software Forensics: Old Methods for a

New Science.” Proceedings of SE:E&P’96 (Software Engineering: Education and
Practice). Dunedin, New Zealand, IEEE Computer Society Press, 367-371.

21. Spafford, E. H., (1989). “The Internet Worm Program: An Analysis,” Computer

Communications Review, 19(1): 17-49.

22. Spafford, E. H., and Weeber, S. A. (1993). “Software forensics: tracking code to its

authors.” Computers and Security, 12:585-595.

23. Stamatatos, E., N., Fakotakis, and G. Kokkinakis. (2000). “Automatic text categorisation in

terms of genre and author.” Computational Linguistics, 26(4): 471-495.

www.ijde.org 15

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

Appendix 1: Copyright and Source Code

Approaching these authorship problems through source code analysis is forensically feasible
(as pointed out by Spafford and Weeber [18]), but also legally justifiable because, at least in
the United States, source code is copyrightable. Copyright law in the United States, as it
currently exists, was enacted by the United States Congress in 1976. Act of October 19, 1976
Pub. L. No. 94-553 90 Stat. 2541, codified at Title 17 United States Code §§ 101 et. seq. A
creative work is copyrightable if it falls within the purview of 17 U.S.C. § 102(a) which states
that, “[c]opyright protection subsists, in accordance with this title, in original works of
authorship fixed in any tangible medium of expression, now known or later developed, from
which they can be perceived, reproduced, or otherwise communicated, either directly or with
the aid of a machine or device.” Computer programs are not explicitly enumerated in the list of
examples that follow this definition. 17 U.S.C. 102(a)(1-8) Congress contemplated the
authorship of computer programs as falling under the guise of “literary works” before adopting
17 U.S.C. §§ 101 et. seq. “The term ‘literary works’ does not connote any criterion of literary
merit or qualitative value: it includes catalogs, directories, and similar factual, reference, or
instructional works and compilations of data. It also includes computer data bases, and
computer programs to the extent that they incorporate authorship in the programmer's
expression of original ideas, as distinguished from the ideas themselves.” H.R. Rep. No. 1476,
94th Cong. 2d Sess. 54. In a subsequent 1980 Amendment to 17 U.S.C § 101, “computer
program” became defined as a “set of statements or instructions to be used directly or
indirectly in a computer in order to bring about a certain result.” However, despite the
accounting of computer programs by Congress in 17 U.S.C. § 101 and later amendments,
there was nothing specific mentioned in regard to source codes or other component building
blocks of computer programs.

Copyright law is a matter of federal law and jurisdiction in the United States. 18 U.S.C. § 1338
As such, each federal circuit is free to establish precedent in interpreting copyright law so long
as the interpretation is in accord with the language of the statute and the United States
Constitution. The most cited example of the extension of copyright protection to source codes
comes from the Third Circuit. Building off of its decision in Williams Electronics, Inc. v. Artic
International, Inc., 685 F.2d 870 (3d Cir. 1982), which first established that the copyrightability
of computer programs existed after the 1980 amendment to 17 U.S.C. § 101 in the Third
Circuit, the court turned to evaluating the copyrightability of source codes in the seminal case
of Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983), cert.
dismissed 464 U.S. 1033 (1984). Franklin Computer Corporation (“Franklin”) manufactured
the ACE 100 computer which was designed to be compatible with the programs of the Apple II.
Franklin copied Apple Computer Incorporated’s (“Apple”) operating system to achieve this
compatibility. Franklin did not contest that it copied the operating system; rather, it asserted
that operating systems are not copyrightable. In rejecting this argument, the court maintained
that “[c]omputer programs can be categorized by function into either application programs or
operating systems programs.” Id. at 1243. Further, these programs originate from “three levels
of computer language:”
 [1] High level language, such as the commonly used BASIC or FORTRAN, uses
English words and symbols, and is relatively easy to learn and understand (e.g., "GO TO 40"
tells the computer to skip intervening steps and go to the step at line 40).

www.ijde.org 16

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

 [2] A somewhat lower level language is assembly language, which consists of
alphanumeric labels (e.g., "ADC" means "add with carry"). . .
 [3] [the] lowest level computer language, is machine language, a binary language
using two symbols, 0 and 1, to indicate an open or closed switch (e.g., "01101001" means, to
the Apple, add two numbers and save the result). Id. “The statements in high level language,
and apparently also statements in assembly language, are referred to as written in ‘source
code’. Statements in machine language are referred to as written in ‘object code’.” Id.

The determination that source codes, in addition to computer programs generally, are
copyrightable, was essential for Apple’s success. Franklin argued that operating system
programs were distinguishable from application programs because the operating system
constituted a “process, method, or system of operation,” which is considered to be too broad of
a subject matter to be copyrightable. Baker v. Selden, 101 U.S. 99 (1879). Additionally,
Franklin relied on Mazer v. Stein, 347 U.S. 201 (1954), which draws a line between the
copyright of expression and ideas. Copyright protection “is given only to the expression of the
idea--not the idea itself." Id. at 217. This dichotomy is now expressed in 17 U.S.C. § 102(b).
Franklin wanted to argue that the operating system of a computer is not copyrightable as it is
necessary function that can only be expressed in a particular way. The Third Circuit answered
the threshold question of “[i]f other programs can be written or created which perform the same
function as an Apple's operating system program, then that program is an expression of the
idea and hence copyrightable,” in the affirmative. Apple, 714 F.2d at 1253. Consequently,
despite the different function of operating systems and application programs, the computer
programs are still based on source and object codes which properly fall within the
contemplation of “literary works.”1

Once a subject matter is deemed copyrightable, the author of the subject matter retains
exclusive rights to that subject matter. 17 U.S.C. § 106. Copyright infringement occurs when
“[a]nyone who violates any of the exclusive rights of the copyright owner as provided by
sections 106 through 122…[is] an infringer of the copyright or right of the author, as the case
may be.” 17 U.S.C. § 501(a). If “anyone” is found to be an infringer, monetary damages or
injunctions from using the copyrighted material may follow. Cases, such as the one discussed,
as well as cases in each of the other federal circuits, which establish the copyrightability of the
source and object codes of a computer program through an interpretation of 17 U.S.C. §
102(a), are referred to as “first generation” cases. Each federal circuit to date has held that a
computer programs and source codes are “literary works” for purposes of copyright.2

However, what remains divergent among the federal circuits are the number of tangential
issues currently being litigated which constitute “second generation” cases. Although too
extensive for purposes of the present discussion, it is worth mentioning the “second
generation” cases. “Second generation” cases focus on: 1) which elements of computer

1 In addition to the subject matter being an “original work of authorship” for purposes of determining copyrightability, the subject matter

must be “fixed in [a] tangible medium of expression.” 17 U.S.C. § 102(a). In Apple, the court firmly established that “a computer
program in object code embedded in a ROM chip is an appropriate subject of copyright.” Apple, 714 F.2d at 1249.

2 It is also largely accepted on the international level that computer programs are copyrightable, see generally, Article 4 of the World
Intellectual Property Organization (WIPO) “[c]omputer programs are protected as literary works within the meaning of Article 2 of the
Berne Convention. (1971) Such protection applies to computer programs, whatever may be the mode or form of their expression.”

www.ijde.org 17

International Journal of Digital Evidence Spring 2007, Volume 6, Issue 1

programs are copyrightable; 2) what should the scope of protection be in infringement actions;
3) is there copyright protection of computer screen display formats (see generally, Computer
Associates International, Inc. v. Altai Inc., 982 F.2d 698 (2d Cir. 1992) and Lotus Development
Corp. v. Borland International, Inc., 49 F.3d 807 (1st Cir. 1995)); 4) reverse engineering (see
generally, Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1993); Atari Games
Inc. v. Nintendo of America, Inc., 975 F.2d 832 (Fed. Cir. 1992); and Sony Computer
Entertainment Inc. v. Connectix Corp., 203 F.3d 596 (9th Cir. 2000); and 5) microcodes (see
generally, Syntek Semiconductor Co. v. Microship Technology, Inc., 307 F.3d 775 (9th Cir.
2002). These cases will take time to resolve.3 For the time being, it is certainly clear that
source codes are copyrightable, source codes are subject to infringement actions for improper
use, and that identification of source code authorship can and should be presented as reliable
and admissible digital evidence.

3 It should be noted that copyright is but one protection that could potentially be extended to source codes. However, alternative

protections of patent, trade secret, and licensing agreements, tend to focus more on the finished product rather than the determination of
source code.

www.ijde.org 18

	Abstract
	The Forensic Significance of Source Code
	Related Work in Computing and Natural Language Authorship
	The Scap Method
	The Data Sets and Experimental Results
	Discussion and Future Work

