
International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

Process Forensics: A Pilot Study on the Use of Checkpointing
Technology in Computer Forensics

Mark Foster

Joseph N. Wilson
University of Florida

Abstract

The goal of this paper is to introduce a new area of computer forensics: process
forensics. Process forensics involves extracting information from a process’s address
space for the purpose of finding digital evidence pertaining to a computer crime. The
challenge of this sub-field is that the address space of a given process is usually lost
long before the forensic investigator is analyzing the hard disk and file system of a
computer. Therefore, the authors make the case that an accurate and reliable
checkpointing tool could create a new source of evidence for the forensic investigator.
The technology of checkpointing is nothing new when considering process migration,
fault tolerance, or load balancing. However, with respect to computer forensics, the
gains from checkpointing have yet to be explored.

Introduction

In recent years, computers and the Internet have become an integral part of our society.
Computer are used in the workplace, home, school, and in some cases, public areas
such as shopping malls and airports. The National Telecommunications and
Information Administration (NTIA) released a report showing that Internet growth in the
United States is estimated at 2 million new users each month [1]. The downside to this
trend of pervasive computing is that the amount of computer-based crime is also on the
rise. Statistics published by the CERT Coordination Center show the number of
security related incidents have increased every year since 1998 [2]. From 2001 to 2003
the number of security related incidents more than doubled. As computer crime
increases, so do the demands placed on computer security specialists and law
enforcement.

To many computer security specialists, the idea of intrusion prevention is considered
superior to that of intrusion detection. However, as long as intruders continue to be
successful, the need for reliable intrusion detection systems is apparent. In addition, to
prevent repetitive or similar intrusive attacks, reliable computer forensics are necessary
to help determine why an attack occurred in the first place. Thus, computer forensics is
an integral part of intrusion prevention.

www.ijde.org

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

The purpose of this paper is to introduce a new area of computer forensics. Currently,
the discussion of this new area is largely theoretical. However, the authors’ previous
studies on checkpointing [3] and intrusion detection [4] have provided a unique
perspective that gives them confidence that this new area can be far more than
theoretical. Put simply, the unique perspective gained from studying both checkpointing
and intrusion detection indicates that computer forensics is lacking in the sub-field
termed process forensics. Process forensics involves extracting information from the
process address space of a given program. This paper discusses how the information
extracted from a process address space can be a source of evidence following a
computer crime.

The collection of digital evidence in the form of process forensics can be divided into
two areas. First, there must exist some tool that can extract information from a process
address space. Secondly, one must know when to extract such information from a
process address space. Checkpointing technology can be used for the extraction
process. While the goal of checkpointing research is already aimed at storing key
information about a process, the authors believe the proper checkpointing tool can also
meet the needs of the evidence collector. Furthermore, intrusion detection systems can
be utilized to help indicate when such information should be extracted from a process
address space. Intrusion detection systems are already targeting the detection of
malicious activity. It is malicious activity that is most likely to warrant the need for
evidence surrounding a computer crime.

Background Overview

Checkpointing is the technique of storing a running process’s state in such a way that a
process can be restarted from the point at which the checkpoint was created. One
creates a checkpoint by stopping the execution of a process, saving that process’s
address space and kernel state to a file, and then resuming the execution of that
process. Saving this state to a file uses no additional system resources other than the
stable storage necessary for storing a checkpoint file. Continued decreases in the price
of disk storage make checkpoint storage cost effective. Well-known benefits of
checkpointing include process migration, fault tolerance, and rollback recovery. Often,
checkpoints are made at regular time intervals during the execution of a process. Use
of storage space can be optimized when creating checkpoints at regular time intervals
by saving only the difference between the current checkpoint and the most recent
checkpoint. This is usually referred to as incremental checkpointing. In this paper, the
concept of a terminal checkpoint is introduced. A terminal checkpoint is one that is
created immediately prior to the termination of its associated process.

Stephenson defines computer forensics as the field of extracting hidden or deleted
information from the disks of a computer [5]. Carrier [6] refers to computer forensics as
the acquisition of hard disks and analysis of file systems. Simply put, computer
forensics is the art of extracting digital evidence from a computer system usually
associated with a crime. Not relevant to this discussion, computer forensics does at

www.ijde.org 2

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

times include rescuing data from a damaged or corrupted computer system.
Commonly, a computer forensic investigation takes place on the computer system that
has either suffered an attack from another computer, or on the apprehended computer
of a suspected criminal. In the case of the computer attack, the forensic investigator is
usually attempting to find evidence that can answer questions such as, where did the
attack originate, what vulnerability made the attack possible, and what files were
compromised as a result of the attack. In the case of the suspected criminal’s
apprehended computer, the forensic investigator is usually looking for evidence of the
suspected criminal’s recent behavior, motives, or planning of future crimes.

In either case, the forensic investigator has a number of tactics for collecting such
evidence. The investigation may involve anything from searching the file system for
incriminating text files to analyzing log files for evidence of the attack. Typically, a
computer forensic investigation involves using special forensic tools to analyze items
such as slack space, unallocated space, or swap files. Slack space is the leftover
space in a block or cluster allocated to a file but not used by the file. Unallocated space
is space that is currently not used by any file. Both of these items may contain bytes
from old files that were deleted, but have yet to be fully overwritten. This allows a digital
forensic investigator to extract this data, using forensic tools. Swap files can be thought
of as scratch paper for an application or the operating system. These files may have
traces of data that allow the digital forensic investigator to piece together what actions
have previously taken place on the given computer.

Another example of data often used in a forensic investigation that does not require
special tools to extract is log files. During a forensic investigation, log files on the
victimized or suspected criminal’s computer are of the utmost importance. A survey of
the literature on computer forensics reveals the direct correlation of logging and a
successful forensic investigation [5,7,8]. Stephenson refers to the lack of logs as the
single biggest barrier to a successful investigation of an intrusion.

Upon completion of a forensic investigation all of the extracted evidence is preserved
and stored in a secure facility. A chain-of-custody is maintained to assure that no one
tampers with the collected evidence. A chain-of-custody is simply a system of recording
who is responsible for the evidence at any point in time from the moment it was
collected till the moment it is used in a courtroom.

Slack space, unallocated space, swap files, log files, and most other items analyzed by
the forensic investigator share an important similarity. Each of these items exists as
nonvolatile data. Nonvolatile data has been saved to disk or resides on some other
form of stable storage. Volatile data, on the other hand, resides in main memory such
as a process’s address space. Once a computer is unplugged from its power source,
all volatile data is lost, but nonvolatile data remains intact. Due to the inherent nature of
digital data, computer forensics is largely restricted to the analysis of nonvolatile data.
One of the major keys to improving and enhancing computer forensics is to increase the
amount of relevant nonvolatile data available to the forensic investigator. In this paper,
the idea of using checkpointing technology to create additional nonvolatile data from

www.ijde.org 3

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

one of the most common forms of volatile data, namely processes, is discussed. This
would add checkpoint image files to the collection of items the forensic investigator can
analyze for evidence.

Proposed Process Forensics

All work on a computer system is done in the form of a process. Processes can be
divided into two categories: user-space processes and kernel-space processes. For the
purpose of this discussion, only user-space processes are referred to. The reason for
this is that a given kernel-space process is always acting on behalf of a particular user-
space process or processes. Regardless of the unique methods different platforms
used to handle processes, most all processes contain a great deal of information.
Unfortunately, due to the nature of computer forensics, by the time a forensic
investigation has begun, most of the relevant processes have already been terminated.
Often, the involved computer system has been completely shutdown. The only data
with which a digital forensic investigator can analyze processes are any files created
while a given process was executing. Thus, the digital forensic investigator is left with a
very limited amount of evidence concerning processes. Computer forensics can and
should be expanded to include more process information. Checkpointing is one means
to create more evidence to support process forensics.

The inspiration for applying checkpointing technology to the field of computer forensics
stems from the authors’ previous study on checkpointing [3]. From this study the
authors gained valuable insights that led them to believe checkpointing has a role
among the tools of the digital forensic investigator. Earlier checkpointing was referred
to as the technique of storing a running process’s state in such a way that a process
can be restarted from the point at which the checkpoint was created. Put more simply,
checkpointing creates a snapshot of a process’s address space. This snapshot has the
ability to restart the given process, thus it must contain all pertinent details about the
process. The authors’ study indicates that checkpointing does not have to be restricted
to processes in a controlled environment. As the study shows, the development of run-
time and transparent checkpointing tools is very feasible. Furthermore, checkpoints can
be created very quickly, without modifying the process being checkpointed. This allows
one to checkpoint malicious processes without affecting them and without notifying any
potential attacker who is controlling such processes.

Possible Evidence in a Checkpoint

The discussion continues with a quick overview of the main sources of information that
may be found in the checkpoint of a process. Recall that a process exists in main
memory, where it has been assigned its own address space. Some of the more useful
information found in a process’s address space, and therefore included in a checkpoint,
consists of items such as the process identification (PID) or the user who owns the
given process, and pointers to parent, child, and sibling processes. While an attacker

www.ijde.org 4

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

may have altered some of this information, it still provides a starting point for the
forensic investigator. Information such as a PID is essential in distinguishing between
multiple processes. Furthermore, knowing what user owned a process indicates who
started the process or whose account may have been compromised. Ownership of a
process, whether legitimate or not, also tells us the permissions level of the process.
Clearly, a process run as root can do far more damage than a typical user process. In
addition, knowing the relationship between different processes can assist in isolating the
source of a process or what other processes resulted from the execution of a process.
The parent and sibling relationship between processes is something not likely found in
log files.

One of the more notable portions of a process’s address space is the stack. The stack
contains significant information pertaining to the execution sequence of a process. This
sort of information is extremely useful to someone investigating a buffer overflow or
stack smashing attack [4]. Given access to the stack, a digital forensics investigator
can determine both where and how such an attack was made possible. Without
knowing where and how an attack was made possible, it is very difficult to prevent
similar future attacks without limiting one’s usage of his own system. The process
address space also contains the heap, bss, and data segments of a process. Analysis
of the heap segment may reveal evidence pertaining to a heap smashing attack much
like the stack in a buffer overflow or stack smashing attack. The stack, heap, bss, and
data segments are all potential targets of malicious input attacks. In turn, each of these
items would contain essential evidence of such an attack. As an integral part of the
process address space, each of these items is included in a checkpoint image file. An
additional example of this sort of malicious input attack would be a format string attack.

A process’s address space also contains information about items referred to as process
peripherals. Process peripherals include opened files, sockets, and pipes. Knowing
what files a process accessed can be extremely valuable to the forensic investigator.
This can indicate the intruder’s objective, help isolate the damage done during the
attack, or indicate attempts by the intruder to cover his or her own tracks. The digital
forensic investigator and system administrator need to know if files such as password or
log files have been modified or accessed. Tampering with a password file indicates the
likelihood of future attacks via a compromised account. When log files have been
tampered with, it usually indicates an attacker is attempting to cover his/her tracks.
Socket connections provide additional evidence of communication links involved in a
crime. Socket connections may indicate from where an attacker is launching an attack
or where the attack is dumping stolen data. Pipes are another form of communication in
which the digital forensic investigator would take an interest. Some checkpoints even
include data that is still in the pipe buffer. Process peripherals could also include items
such as a process’s corresponding tty or terminal. With this information, the digital
forensic investigator may learn whether or not the attack was launched locally.

The possibilities of evidence from process forensics are quite vast. However, it is
essential to know when to collect process forensics in order to gain from it. The
following section addresses this issue.

www.ijde.org 5

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

Opportunities for Checkpointing

A system administrator must make a number of tough decisions when dealing with an
intruder. At times, a system administrator may become aware of an attack while it is in
progress. This may be a result of the system administrator’s own monitoring of the
system or an alert issued by an Intrusion Detection System (IDS). The knee-jerk
reaction to such a scenario is to kill all the processes related to the attack. While such
an approach can be very effective in stopping the attack, it does little toward collecting
evidence about the attack. Furthermore, such an approach is likely to tell the intruder
that he or she was detected. Most of the time, one does not want the intruder to know
he or she was detected until there is enough evidence to prove a crime took place and
who committed it. For those reasons, when an intrusion is detected, whether by the
system administrator or IDS, the immediate actions should include collection of
evidence, or more specifically process forensic data, using incremental checkpoints that
can be created without alerting the intruder. Once the intruder’s session is ended,
whether by the system administrator or by the intruder himself, the resulting checkpoints
can provide crucial information about the attack.

A recent look at the ICAT vulnerability statistics shows a significant number of the CVE
and CVE candidate vulnerabilities were due to buffer overflows. For the years 2001,
2002 and 2003 buffer overflows accounted for 21%, 22%, and 23% of the vulnerabilities
respectively [9]. While much work has been done to detect buffer overflow attacks, to
the knowledge of these authors, little has been done to enhance the ability to collect
evidence resulting from buffer overflow attacks. Process forensics derived from
checkpointing can help fill this void. Recall that a checkpoint contains the stack, heap,
data, and bss segments of a process. In the case of a buffer overflow attack, creating
checkpoints the moment the attack is detected, and even while the attack is in progress,
will likely collect vital evidence. A forensic investigator can use this information to
determine more closely how and when the intruder entered the system. A thorough
analysis of the stack is likely to show what function contains the exploited vulnerability.
Isolating the vulnerability is essential to preventing a similar attack in the future. In the
case of a stack smashing attack, any code injected onto the stack may uniquely
correspond to code that can later be found on the attacker’s computer. The same is
true for a heap smashing attack and a process’s corresponding heap segment. While
this alone does not prove anything, it does provide an additional corroborating stream of
evidence. Any additional such evidence is desirable in the case of a legal setting.
Stephenson [5] reminds us that it takes a “heap of evidence, to make one small proof.”

ICAT’s CVE and CVE candidate vulnerabilities classified as buffer overflow attacks are
actually a subgroup of a much larger classification. This larger classification, known as
input validation errors, accounted for 49%, 51%, and 52% of the CVE and CVE
candidate vulnerabilities for the years 2001, 2002, and 2003 respectively. The idea of
collecting evidence about a buffer overflow attack from a checkpoint is based on the
concept that a buffer overflow attack stems from malicious input. Such input has no
choice but to become part of a process’s address space.

www.ijde.org 6

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

This approach to process forensics and evidence collection can be expanded far
beyond buffer overflow attacks to include other input validation errors, such as a
boundary condition error. While some boundary condition errors result from a system
running out of memory, others may result from a variable exceeding an assumed
boundary. Inspection of variables in a checkpoint file may reveal such an assumed
boundary and expedite the process of closing a vulnerability once exposed. The very
nature of attacks that exploit input validation errors automatically leave evidence in a
process’s address space. The potential for evidence and process forensics from
checkpointing intruder related processes resulting from such vulnerabilities have yet to
be explored.

Most intrusion detection systems can be categorized as misuse detection and anomaly
detection. Misuse detection usually refers to those systems that utilize some form of
signature or pattern matching to determine whether or not a process is part of an
intrusion. Anomaly detection usually refers to those systems that attempt to define
normal behavior so that processes can be categorized as normal or intrusive. Due to
the inherent challenge in defining what is normal behavior, these systems often rely on
some form of threshold to distinguish between normal and anomalous behavior.
Markov Chain Model [10], Chi-square Statistical Profiling [11], and Text Categorization
[12] are examples of such approaches to anomaly detection. The authors propose that
such anomaly detection systems use checkpointing as an evidence collection technique
for processes that are approaching or have passed the given threshold. Incremental
checkpoints can be used to continually collect evidence of a process’s behavior for any
process that is considered anomalous or nearing anomalous. This would result in
process forensics for those malicious processes that never quite reach the threshold
and would usually go undetected. In addition, this would support forensic investigations
of processes that do cross the threshold. Such forensics could expedite finding out why
a process deviated from its normal behavior.

A common dilemma facing the computer crime investigator when entering a crime
scene is whether or not to unplug the computer [7]. Any work by the criminal that
resides in main memory is lost if the computer is unplugged. However, forensic
analysis of a hard disk must always be performed on a copy rather than the original. In
order to create a copy of the confiscated hard disk, the computer must eventually be
powered off. Depending on the platform, Stephenson usually recommends directly
unplugging the power source [5]. This avoids any booby-traps that may be triggered if
the machine is not shutdown in a particular manner. Regardless of the manner by
which a machine is shutdown, all of the volatile data such as a running process is lost.
This illustrates another example of where additional evidence may be gained by using
checkpointing. Prior to shutting down or unplugging a computer, relevant processes
could be checkpointed. The resulting checkpoint files would allow the forensic
investigator to analyze the running processes at a later time.

www.ijde.org 7

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

Additional Enhancements

If a computer crime ever reaches the courtroom, any evidence presented before the
court must have been preserved through a chain-of-custody [5]. In other words, one
must be able to verify with whom and where the evidence has been held since the
moment it was collected. In the case of a checkpoint, the checkpoint resides in a file
and can therefore be digitally fingerprinted immediately following its creation. In a
courtroom, this digital fingerprint can be verified to show that the checkpoint file remains
unaltered. A time and date stamp can also be included and verified with a digitally
fingerprinted checkpoint file.

In addition, a checkpoint stored as a file can easily be transferred to a secure location,
much like some logging systems. It is often recommended that logs be stored on a
secure system separate from the system that generates the logs. These log files are
also commonly stored in an encrypted format. These measures deter an intruder from
altering log files to cover-up his or her unauthorized access to a system. Checkpoint
files can be treated in the same manner. They can be stored on secure systems
separate from where they were created. This prevents an intruder from modifying or
destroying any evidence that is collected in the form of a checkpoint file.

Sommer has provided a good analysis of why intrusion detection systems fall short of
providing quality evidence [8]. The authors propose that a checkpointing system should
be developed separately from an ID system. During an attack, the ID system can
trigger the checkpointing system to handle any intrusion related processes. This allows
the ID research to focus on detection, rather than evidence collection. A checkpointing
system, due to its inherent goal of recreating a process, is already aimed at collecting
information about a process. This goal can be more easily combined with the goal of
evidence collection. Furthermore, by allowing checkpointing systems to provide the
evidence collection, the need for drastic modifications to existing ID systems is
alleviated.

The format of a checkpoint file could be shared among multiple platforms. The format
of a checkpoint file should be standardized similar to that of the ELF format used on
Linux platforms. The standardization of checkpoint file formats would facilitate a
common ground from which law enforcement, academia, and other researchers can
work. This would facilitate the development of tools for working with and analyzing
checkpoint files. In addition, standardizing any aspect of the forensic investigation aids
in training future forensic investigators. Furthermore, standardization would assist in the
acceptance of checkpoint evidence in legal proceedings. Likewise, standardization
could further facilitate process migration among different platforms.

Carrier [6] has proposed a balanced solution to the open/closed source debate with
regard to digital forensic tools. Carrier urges that digital forensic tools be categorized
into tools for extraction and presentation. He proposes that extraction tools should

www.ijde.org 8

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

remain open source, while presentation tools can have closed source. Such a balanced
solution could easily be applied to checkpointing tools. The checkpoint/restart engine of
a checkpointing system could remain open source. This allows researchers and the
digital forensics community to validate the inner-workings of such checkpointing tools.
Meanwhile, the presentation tools used for presenting, visualizing, and analyzing the
data from a checkpoint file could remain closed source. It is likely that many individuals
involved in the legal proceedings following a computer crime do not posses the
necessary technical skills for understanding the data found in a checkpoint file. This
provides ample opportunity for software developers to create presentation tools for
checkpoint files. The goal of making complex checkpoint file data easily
understandable would create ample competition for the private sector.

Summary

Researching both checkpointing and intrusion detection results in a unique perspective.
This perspective is that computer forensics is lacking in the sub-field termed process
forensics. Process forensics involves extracting information from the process address
space of a given program for the purpose of evidence collection. Since computer
forensics is restricted to nonvolatile data, to improve computer forensics new sources of
nonvolatile data must be found. Since checkpointing creates nonvolatile data from
processes, including checkpointing technology with intrusion detection systems can
create a new source of nonvolatile data. In turn, increasing the amount of nonvolatile
data increases the amount of forensic evidence available to the digital forensic
investigator. Since this evidence comes from processes, it is appropriate to refer to it as
process forensics. This paper has explored different sources and benefits of process
forensics, one primary example being the evidence collected by an intrusion detection
system enhanced with checkpointing technology.

Palmer [13] suggests that the future is likely to bring even tougher standards for digital
evidence. Standardizing items such as the checkpoint file format used for process
forensics can help meet these standards. Standardizing methods of evidence collection
can help thwart some of the scrutiny placed on digital evidence in a courtroom setting.
In addition, standardizing the checkpoint file format helps facilitate the training process
of future digital forensic investigators. Lastly, it encourages the development of tools
used to analyze checkpoint files for the purpose of process forensics.

In [5], Stephenson addresses the importance of reconstructing the crime scene.
Anything less than the ability to recreate an entire process state may lead to holes in the
evidence required to identify an attacker or prevent similar future attacks.
Checkpointing provides the necessary level of detail to recreate an entire process.
Although many attacks to date have not necessitated checkpointing, the needs of the
past should not limit our preparedness for the future.

www.ijde.org 9

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

In closing, researchers and the digital forensics community must continue to find new
sources of evidence following computer crimes. In many cases checkpointing
technology can achieve such a goal.

© 2004 International Journal of Digital Evidence

About the Authors

Mark Foster is a Ph.D. Candidate in the Computer and Information Sciences and
Engineering department at the University of Florida. He completed his Bachelors
degree in Computer Science at Vanderbilt University. He is interested in many aspects
of computing, but especially checkpointing, intrusion detection and computer forensics.
Outside of computers his main hobbies are running and movies.

Joseph N. Wilson is an Assistant Professor at the University of Florida's Computer and
Information Science and Engineering Department. He received his Ph.D. in Computer
Science from the University of Virginia Department of Computer Science in 1985. His
interests lie in Systems, Programming Languages, Computer Vision, and Image and
Signal Processing.

References

[1] A Nation Online: How Americans are Expanding Their Use Of the Internet, retrieved

May 10, 2004, from http://www.ntia.doc.gov/ntiahome/dn/ .

[2] CERT Coordination Center Statistics, retrieved May 10, 2004, from

http://www.cert.org/stats/cert_stats.html .

[3] M. Foster, J.N. Wilson, Pursuing the Three AP's to Checkpointing with UCLiK,

Proceedings for the 10th International Linux System Technology Conference,
October, 2003.

[4] M. Foster, J.N. Wilson, S. Chen, “Using Greedy Hamiltonian Call Paths to Detect

Stack Smashing Attacks,” to appear in the Proceedings of the 7th Information
Security Conference, Palo Alto, CA, September, 2004.

[5] P. Stephenson, Investigating Computer-Related Crime, CRC Press, 1999.

[6] B. Carrier, Open Source Digital Forensics Tools: The Legal Argument, @Stake

Research Report, October, 2002.

[7] A. Yasinsac, Y. Manzano, Policies to Enhance Computer and Network Forensics,

Proceedings of the 2001 IEEE Workshop on Information Assurance and Security,
West Point, NY, June, 2001.

www.ijde.org 10

http://www.cise.ufl.edu/
http://www.cise.ufl.edu/
http://www.cs.virginia.edu/
http://www.ntia.doc.gov/ntiahome/dn/
http://www.cert.org/stats/cert_stats.html

International Journal of Digital Evidence Summer 2004, Volume 3, Issue 1

www.ijde.org 11

[8] P. Sommer, Intrusion Detection Systems as Evidence, First International Workshop

on the Recent Advances in Intrusion Detection, Belgium, September, 1998.

[9] ICAT Vulnerability Statistics, retrieved June 27, 2004, from

http://icat.nist.gov/icat.cfm?function=statistics.

[10] N. Ye, A Markov Chain Model of Temporal Behavior for Anomaly Detection,

Proceedings of the 2000 IEEE Workshop on Information Assurance and Security,
West Point, NY, June, 2000.

[11] N. Ye, Q. Chen, S. M. Emran, K. Noh, Chi-square Statistical Profiling for Anomaly

Detection, Proceedings of the 2000 IEEE Workshop on Information Assurance
and Security, West Point, NY, June, 2000.

[12] Y. Liao, V. R. Vemuri, Using Text Categorization Techniques for Intrusion

Detection, 11th USENIX Security Symposium, August, 2002.

[13] G.L. Palmer, Forensic Analysis in the Digital World, International Journal of Digital

Evidence, Spring 2002, Volume 1, Issue 1.

http://icat.nist.gov/icat.cfm?function=statistics

	Process Forensics: A Pilot Study on the Use of Checkpointing Technology in Computer Forensics
	Mark Foster
	Joseph N. Wilson
	Abstract
	Introduction
	Proposed Process Forensics
	Possible Evidence in a Checkpoint
	Additional Enhancements
	Summary

	© 2004 International Journal of Digital Evidence
	About the Authors
	References

