
International Journal of Digital Evidence Summer 2002, Volume 1, Issue 2

Shrinking the Ocean: Formalizing I/O Methods in
Modern Operating Systems

Matthew B. Gerber, Research Scientist, the Institute for Simulation and Training
John J. Leeson, Ph.D, Associate Professor of Computer Science

 University of Central Florida

Abstract

Currently, it is not practical for any single software system to perform forensically acceptable
verification of the contents of all possible file systems on a disk, let alone the contents of more
esoteric peripherals. Recent court decisions that require judges to restrict testimony based on
their understanding of the validity of the science behind it will only make such verification even
more difficult. This problem, critical to forensic examiners, is actually symptomatic of a larger
problem, which lies partly in the domain of digital forensics and partly in the domain of pure
computer science. Lack of verifiability, along with a host of other problems, points to
inadequate formal description of file systems and I/O methodology. A review of the literature
finds, in fact, that little effort has been put into such formalization. We assert that a constructive
formalization of peripheral input and output for a computer can address this and several other
concerns.

1. Introduction

Currently, it is not practical for any single software system to perform verification of the contents
of all possible file systems on an IDE, SCSI, USB, or IEEE 1394 hard disk drive—let alone the
contents of more esoteric peripherals.

Examiners are not without means of navigating this sea of information—forensic scientists use
various innovative tools and jury-rig various effective techniques to enable them to obtain vital
data, and newer versions of these tools can read many of the most common file system formats.
(NTI, Guidance, U.S. Treasury)

Verifying that each and every one of these tools and (especially) techniques are forensically
acceptable, however, is not an easy task in the laboratory, let alone the courtroom. Recent court
decisions that both empower and require judges to restrict testimony based on their
understanding of the validity of the science behind it will only make such verification even more
difficult. (Daubert, Kumho)

In the long run, we believe it is not sufficient merely to obtain data. Examiners must begin to
obtain data in a forensically acceptable manner. We propose that this means using techniques
that have survived the accepted processes of scientific peer review in credible publications, and
that should therefore be acceptable with little difficulty under the Daubert standard for scientific
evidence.

www.ijde.org

International Journal of Digital Evidence Summer 2002, Volume 1, Issue 2

This problem is most obviously critical to forensic examiners. However, it is actually
symptomatic of a larger problem, which lies partly in the domain of digital forensics and partly
in the domain of pure computer science. To shed light on this problem, we first recall how
computers handle information in general.

In the strictest sense, a computer is only the microprocessor and physical (or primary) memory
that reside on the motherboard of what is typically known as a PC. Computers need to receive
input from, and generate output to, a variety of peripherals. Examples of peripherals are fixed
disk drives, removable magnetic disks, removable optical disks, network interface cards, printers,
analog modems, ISDN modems, video cards, sound input devices, sound output devices,
keyboards, pointing devices; the list goes on. All of these peripherals store, transmit or receive
data, but before anything can be done with that data, it has to wind up in primary memory so the
processor can look it at.

All of the above peripherals are also part of a hierarchy that extends both above and below them.
To create an example that we will use throughout this paper, a typical input request would be to
retrieve a range of bytes from a file on a fixed disk. To do this, a typical PC-architecture
computer must interface with and/or understand, in turn:

• The PCI expansion bus.
• The IDE device controller residing on the PCI expansion bus.
• The file system of the partition on the fixed disk drive that contains the file.

At this point, the computer may retrieve the necessary metadata from the file system to find the
bytes it is looking for, and retrieve those bytes into primary memory.

The elements of this hierarchy are disparate and scattered. For example, a computer running a
modern operating system, such as Microsoft Windows or Linux, will typically have separate
device drivers for the PCI expansion bus, the IDE device controller, and the file system that
contains the file. These drivers will be unrelated, interacting code: each is dependent on each of
the others, and an error in any of them will cause the others to fail in unexpected—and often
nearly untraceable—ways. Were we discussing navigation, it would be as though different types
of maps and entirely different reference points were required to deal with the conditions of
current and weather around every individual island in the sea.

The elements of this hierarchy are also highly duplicated. A recent version of the Linux
operating system contained file system drivers for over twenty file systems, several of which
were over 200K in source size—yet the functionality of every file system is fundamentally
similar. Various IDE controllers must have their own drivers as well. If the fixed disk drive
resides on a SCSI bus instead of an IDE bus, then the hierarchy of drivers is different yet again,
for an essentially similar function. (Torvalds)

As more and different peripherals (such as fixed disks and their controllers) and means of
accessing those peripherals (such as file systems) become available, the difficulties faced in
accessing them all will multiply; the ocean will only grow wider and deeper, and require even
more maps. This will become a concern to anyone who wishes to create or maintain stable,
reliable software systems capable of interfacing with most available peripherals; even today, it is
of concern to two significant groups.

www.ijde.org 2

International Journal of Digital Evidence Summer 2002, Volume 1, Issue 2

• Law enforcement officers must be able not only to read information from every
conceivable type of peripheral, but to do so in a verifiable, duplicable, and completely
non-destructive manner. Current systems are simply inadequate to this task: most serious
attempts to produce verifiable results involve rebooting a computer into MS-DOS and
running highly expensive tools that work with very few types of peripherals.

• Maintainers of current operating systems find I/O to be increasingly troublesome:
Microsoft has gone on record blaming up to 80 percent of crashes in some versions of
Windows on device drivers. Since most Windows device drivers are actually written by
third parties, it has become increasingly difficult for Microsoft to quality-control their
own operating system with respect to its I/O subsystems; driver certification programs
have lessened this problem, but do not solve it in a fundamental sense.

• Designers of new operating systems find I/O to be an even worse problem. Peripherals
that work on the most popular operating systems are expected to work on all, and
regardless of where the necessary effort lies, the operating system will be blamed if a
peripheral fails to work with it. As the number of available peripherals explodes, and as
peripheral vendors focus their driver design efforts more and more tightly, it becomes
more and more difficult for any operating systems that do not already have drivers to
obtain them.

We contend that all of these concerns are symptomatic of the same problem. Lack of
verifiability, scattershot design techniques, high amounts of duplication of effort, and low
reusability all point to inadequate description. A review of the literature finds, in fact, that little
effort has been put into formalization of this particular domain.

2 Literature Review

2.1 ISO 7498-1

2.1.1 Review

We begin by reviewing the accepted standard in a domain that has been well-formalized. ISO
7498-1 is the International Standards Organization’s reference model of networking: the Open
Systems Interconnection model. The document spends its first five sections describing in some
detail the assumptions and thought processes that led to the model, which is finally described in
the sixth and seventh sections. It is these sections that primarily interest us.

The Open Systems Interconnection Environment (OSIE) is defined in seven layers of operation,
numbered highest at the most abstract and lowest at the hardware level. They are discussed in
the reverse order of their numbering. The first two, the most abstract, are the least defined by the
document.

• Layer 7 is the application layer. It provides services for end-user applications to access
the OSIE, and is the only layer that does. No layer of the OSIE sits above the application
layer, and the application layer is the only entry point to the OSIE.

• Layer 6 is the presentation layer. The presentation layer defines the syntax of
information being transferred, translating it between the application layer and the rest of
the OSIE.

www.ijde.org 3

International Journal of Digital Evidence Summer 2002, Volume 1, Issue 2

The middle three layers are the heart of the document’s definition of networking. These are the
layers that provide the services typically associated with a network by network software
developers and users.

• Layer 5 is the session layer. This is the layer that has the responsibility for opening,
maintaining, and closing connections (sockets in TCP/IP).

• Layer 4 is the transport layer. This is the layer that handles error detection and
correction, sequencing control and reordering, and flow control.

• Layer 3 is the network layer. This is the layer that handles network routing, relaying,
and gateways between sub-networks.

The bottom two layers, like the top two, are also less thoroughly defined.

• Layer 2 is the data link layer. This is the layer that handles data transmission between
individual points on the network. It may also handle routing within a sub-network.

• Layer 1 is the physical layer. This is the layer that describes the physical
communications media.

The layers are very rigidly defined; to the point that, for example, as far as connection-based and
connectionless services are defined, it is restrictively specified which layers may convert
between the two. The document defines explicitly the services provided by each layer to the
layer above it, and the services used by each layer from the layer below it.

2.1.2 Commentary

The OSI networking model’s domain is obviously different from the one we consider here: it
concerns one computer communicating with another, while we are interested in a computer
communicating with components of itself.

However, it is difficult to overstate the emphasis that the OSI model has had on its domain, the
networking community; it has been called a defining moment in the development of networking
as a science. Its formalization was the catalyst that allowed computer networks—largely, until
then, based on proprietary and incompatible technologies—to reliably interoperate. (Shumaker,
2002)

2.2 Technical Standards for Drive Controllers

As we have intimated, there is a lack of formal description of interface mechanisms; however,
there is no such shortage of technical documentation. The two most common interface systems
for fixed disk drives are well-documented.

• The AT Attachment with Packet Interface (ATA/ATAPI) standard is the technical name
of the hard drive interface system commonly known as IDE (for Intelligent Drive
Electronics). ATA/ATAPI is maintained by Technical Committee T13 of the
International Committee on Information Technology Standards (INCITS); its finalized
documents are available from the American National Standards Institute (ANSI) and its
drafts may be downloaded via the Web. (INCITS-T13)

www.ijde.org 4

International Journal of Digital Evidence Summer 2002, Volume 1, Issue 2

• The Small Computer Systems Interface (SCSI) standard is maintained by Technical
Committee T10 of the INCITS, which handles lower-level interfaces. As with T13,
T10’s draft documents are available online and its finished products may be purchased
from ANSI. (INCITS-T13)

2.3 Papers

Some effort has been made toward formalizing file systems, but it has largely been in terms of
very specific file systems or aspects of those file systems. As far as we have determined, no
generalized formalization of file systems exists.

Ciancarini, Fogli and Gaspari describe Gammalog, a declarative language for problem solving
that includes the concepts of coordination. They illustrate its expressive power by including a
simple “operating system” written in the language. Actually calling it an operating system,
however, is overstating the case; the functions that actually read and write files are not described
in the paper. (Ciancarini et al., 2000)

Heisel describes an attempt to specify the user view of the UNIX file system in the Z modeling
language. The attempt is interesting to us because of the formal level at which it models the file
system in question. It is, however, concerned with what the user sees, not what is actually stored
within the file system itself. Actual discussion of the fine points of the model would require a
specification of the Z language, which Heisel does not give and which we will not give here.
(Heisel, 1995)

Heydon and Tygar describe Miró, a formal system for specifying and checking security
constraints under UNIX. Miró is not theoretical; its designers intend it to be implemented and
used by system administrators. Its domain is limited to security. (Heydon & Tygar, 1994)

Miró defines two languages: an instance language to create security configurations, which are
simply matrices of subjects versus objects on a file system with each cell being “grant” or
“deny”; and a constraint language for security policies, whereby each policy is a set of
constraints which is in turn a set of configurations, and a configuration is consistent with a policy
if it is within each of that policy’s configurations.

The instance language is a (relatively) simple set of named boxes and lines. A box can specify a
set of users or a set of files, and can contain other boxes that are subsets. A “user” box can have
a directed line drawn from it to a “file” box, the line specifying either the granting or the denying
of certain accesses. More specific arrows have higher priority. Each box has a type that gives it
certain attributes; the types are specified in an object-oriented manner, children inheriting
attributes from their parents.

A constraint specifies a pattern of instance pictures, just as a language specifies a pattern of
strings. A box pattern specifies, in a predicate language, the characteristics of the boxes it
matches. Semantics arrows specify access permissions to be matched between boxes that match
the box patterns they connect. Containment arrows specify containment relationships to be
matched between boxes that match the box patterns they connect.

The remainder of the paper describes the implementation of the software system itself, and is
beyond the scope of this review. Miró is interesting to us for its formal specification of a

www.ijde.org 5

International Journal of Digital Evidence Summer 2002, Volume 1, Issue 2

methodology used by file systems, but in the end its precepts and mechanisms are limited to
security.

3. The Solution: A New Formalization

As said in the first section, we assert that a constructive formalization of peripheral input and
output for a computer will, if subscribed to, address all of the concerns that we have raised here.
Starting in this paper, and continuing in a series of papers that will follow, we will design this
constructive formalization. We begin by considering what we need to formalize.

3.1 On the Organization of File Systems

A file system can be seen as a tree of directories with sequential files as its leaves. All modern
file systems—including FAT, FAT32, NTFS, HFS, HFS+, ext2, ext3, reiserfs, xfs, and others far
too numerous to list—operate in this fashion.

All of these systems also have a date and time stamp for when the file was last modified. Some
also have one for when it was initially created; some even have one for when it was last
accessed.

Other forms of metadata are more fragmented. File permissions do not exist per se in FAT or
HFS, but flags that indicate whether the file should be "read-only" do. ext2 uses the UNIX
model of file system permissions, whereas NTFS implements access control lists. HFS and
HFS+ permit files to be explicitly typed by a four-byte code, whereas the other file systems rely
on the file's "extension"—usually the last few characters of its name, following a period—to
know its type. NTFS also permits files to contain alternate data streams, allowing a file to be its
own pseudo-directory of sorts.

In summary, there are many differences between file systems, but far more commonalities. All
of these file systems (and we have listed all of the major ones in use on desktop computers) store
essentially the same information: hierarchical directory structures, file names, timestamp
information, permission-style metadata, and the sequentially ordered bytes comprising the data
of each file. Indeed, an examination of the source code for the Linux operating system finds that
the interface from the kernel to each file system driver is identical: code to handle individual file
systems is abstracted into well-defined modules.

We propose to take this abstraction a step further.

3.2 Hadley

We intend to create a formal, declarative language intended for the purpose of describing input
and output systems. The language will be sufficiently robust to be usable to prove properties of
I/O systems, and will be sufficiently descriptive to be usable for direct implementation of I/O
systems described in it. The language is named Hadley in honor of John Hadley, the British
inventor of the sextant, one of the earliest devices used for seagoing navigation.

Hadley version 1.0 will describe file systems, and be implemented as a universal file system
driver for the BSD UNIX operating system. Future versions of Hadley will handle broader

www.ijde.org 6

International Journal of Digital Evidence Summer 2002, Volume 1, Issue 2

swathes of the I/O chain (such as IDE, SCSI, IEEE 1394, and USB controllers) and support more
operating systems.

3.3 The Probable Limitations of Hadley

The chief limitation of any high level model is that it cannot efficiently model the primitives it
uses to execute itself. As an example, any engine designed to execute Hadley would have to
itself execute in primary memory, and (to work with various expansion buses) have access to the
computer's clock primitives.

Through sufficiently tortured logic it might be possible to treat memory, the clock, or even both
as provided by I/O systems, but it will likely simplify matters deeply to not do so. Given that
simplification, and the fact that it does not seem unreasonable to ask for memory space and clock
time as primitives, we will treat them as such.

This means that while the full version of Hadley, once complete, could describe any peripheral
or—if implemented—serve as the I/O mechanism for any operating system, it likely could not
adequately describe memory management or the clock signal.

3.4 The Advantages of Hadley

Hadley 1.0, as a constructive model capable of generally describing file systems, will by itself
produce many advantages. We describe a few here.

• Given the ability to prove that a file system is described by its description in Hadley,
properties proven about that description would necessarily hold true for the file system
itself.

• Given a fully constructive model, a representation of it would, as we have inferred, be
sufficient for a properly designed program to execute a Hadley description itself—i.e.,
read from and write to a file system based solely on its description.

• Any operating system that properly supported Hadley could support any file system for
which a description was written, without the need for recompilation of the operating
system or installation of new and possibly suspect binary modules.

• It could be relatively easily proven (not merely demonstrated) that an execution of a
given description accessed a given file system accurately and without modifying its
contents, hence satisfying law enforcement's need for verifiable ability to access file
systems.

• Any improvement in the efficiency of the operating system module that interprets Hadley
would be immediately felt by all file systems. Recently, the Linux operating system
added geometry-based optimization for write operations to the ext3 file system; given
support for Hadley, such an addition could be made to every supported file system at
once. (Tweedie, 1998)

Once Hadley has moved beyond file systems, the same advantages expand accordingly to all
forms of input and output that Hadley covers. It is at this stage that Hadley could, for example,
replace the drivers for individual IDE and SCSI controllers that exist in most modern operating
systems.

www.ijde.org 7

International Journal of Digital Evidence Summer 2002, Volume 1, Issue 2

Extending further, it is entirely conceivable that a single, relatively small binary code module in
an operating system could suffice to handle all forms of space and stream based input and output,
and that all improvements made to that module would be felt by all such forms of input and
output. This state would be an obvious improvement, for both formal and practical purposes,
over the current situation of I/O subsystems.

4. References

New Technologies Inc. Safeback (software package). Information available at URL:
http://www.forensics-intl.com/safeback.html.

Guidance Software. Encase (software package). Information available at URL:
http://www.guidancesoftware.com/.

United States Department of the Treasury. iLook (software package). Information available at
URL: http://ilook-forensics.org/.

Daubert v. Merrill Dow Pharmaceuticals (509 U.S. 579, 1993)

Kumho Tire Company v. Patrick Carmichael (526 U.S., 1999)

Linus Torvalds et al. Linux (operating system kernel). Available at URL:
http://www.kernel.org/.

International Organization for Standardization. “Information Technology—Open Systems
Interconnection—Basic Reference Model: The Basic Model”. Publication ISO/IEC
7498-1:1994.

Dr. Randall Shumaker. Interview (2002).

International Committee on Information Technology Standards Technical Committee T13: AT
Attachment. Information available at URL: http://www.t13.org.

International Committee on Information Technology Standards Technical Committee T10:
Lower-Level Interfaces. Information available at URL: http://www.t10.org.

Paolo Ciancarini, Daniela Fogli, and Mauro Gaspari. “A declarative coordination language”.
Computer Languages 26 (2-4), pp. 125-163 (2000).

Maritta Heisel. “Specification of the Unix file system: A comparative case study”. Algebraic
Methodology and Technology Lecture Notes in Computer Science 936, pp. 475-488
(1995).

Allan Heydon and J. D. Tygar. “Specifying and Checking Unix Security Constraints”.
Computing Systems 7 (1), pp. 91-112 (1994).

Stephen C. Tweedie. “Journaling the Linux ext2fs Filesystem”. LinuxExpo 1998. Available at
URL: ftp://ftp.uk.linux.org:/pub/linux/sct/fs/jfs/journal-design.ps.gz.

www.ijde.org 8

http://www.guidancesoftware.com/
http://ilook-forensics.org/
http://www.kernel.org/
http://www.t13.org/
http://www.t10.org/
ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/journal-design.ps.gz

International Journal of Digital Evidence Summer 2002, Volume 1, Issue 2

www.ijde.org 9

© 2002 International Journal of Digital Evidence

5. About the Authors

Matthew B. Gerber is a research scientist at the Institute for Simulation and Training at the
University of Central Florida. He has a Master’s degree in Computer Science from UCF and is
currently pursuing a Ph.D. there. His research interests include computer forensics, formal
systems and software interoperability.

Dr. John J. Leeson is an Associate Professor of Computer Science at the University of Central
Florida and Assistant Director for Digital Evidence of the National Center for Forensic Science.
He has a Ph.D. in Mathematics from the University of Miami. His research interests include
computer forensics and systems software. Dr. Leeson has received Computer Forensic training
from the National White Collar Crime Center and the International Association of Computer
Investigative Specialists (IACIS). He holds CFCE certification from IACIS.

	Shrinking the Ocean: Formalizing I/O Methods in Modern Operating Systems
	Abstract
	
	Currently, it is not practical for any single software system to perform forensically acceptable verification of the contents of all possible file systems on a disk, let alone the contents of more esoteric peripherals. Recent court decisions that requir

	1.Introduction
	2Literature Review
	2.1ISO 7498-1
	2.1.1Review
	2.1.2Commentary

	2.2Technical Standards for Drive Controllers
	2.3Papers

	3.The Solution: A New Formalization
	3.1On the Organization of File Systems
	3.2Hadley
	3.3The Probable Limitations of Hadley
	3.4The Advantages of Hadley

	4.References
	© 2002 International Journal of Digital Evidence
	5.About the Authors

