
International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org

Rigorous Development of Automated Inconsistency Checks for
Digital Evidence Using the B Method

Pavel Gladyshev

School of Computer Science and Informatics
University College Dublin, Ireland

Andreas Enbacka

Department of Information Technologies
Abo Akademi University, Turku, Finland

Abstract

Inconsistencies in various data structures, such as missing log records and modified
operating system files, have long been used by intrusion investigators and forensic
analysts as indicators of suspicious activity. This paper describes a rigorous
methodology for developing such inconsistency checks and verifying their
correctness. It is based on the use of the B Method – a formal method of software
development. The idea of the methodology is to (1) formulate a state-machine
model of the (sub)system in which inconsistencies are being detected, (2) formulate
consistency criteria for the state of that model, (3) rigorously verify correctness of
these criteria using the B Method, and (4) automatically search evidential data for
violations of the formulated consistency criteria using ConAlyzer utility developed for
this purpose. The methodology is illustrated on an FTP server example.

Section 1: Introduction

Automated checking for inconsistencies in evidential data

Much of advanced digital forensics comes from observations of how the operating
system manipulates computer’s data storage and how various user activities modify
operating systems data. For example, when the user logs into the system, a
corresponding log file entry is placed into the system log, and the time of the last
access to the user configuration data is modified. If the user logs into the system
remotely, some record of the incoming Internet connection may be created (e.g. a
record in the firewall log file). Usually user activity leaves multiple “traces” in
different data structures. By analysing file and registry timestamps, system log file
entries, browser history records, deleted temporary files, and other system and
application “artefacts” investigator is able to portray past user activity in great detail.

An obvious defence against digital forensics is to try to hide these traces through
deliberate modification of system data - for example by deleting offending entries in
the log file. A more systematic approach is taken by the Metasploit Antiforensics
Framework project1, which is developing a collection of tools for hiding user traces in
various system data structures.

1 http://www.metasploit.com/

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 2

Although it is possible to modify system data structures, it is currently difficult to
modify them in a consistent manner, so that effects of user actions are cancelled
across multiple data structures. Discovery of inconsistencies in system data can
potentially lead to an investigative breakthrough.

Discovery of inconsistencies is not a straightforward task given the large volume of
data normally processed in digital investigations. It is possible, however, to
automate this process to some degree by programming automated checks that scan
through the evidential data and check it for violations of some property that must
invariably hold in the system data if the system operates normally.

For example, when a sub-directory is created in the FAT file system, the creation
time of the ‘.’ and ‘..’ entries within that directory is equal to the creation time of the
directory’s entry in the parent directory. This condition may be violated, for example,
when the directory is restored from a backup tape. In which case the creation time
for the sub-directory’s entry is taken from the tape, while the creation time of the ‘.’
and ‘..’ entries is the restoration time. A violation of this relation between
timestamps, therefore, may indicate that the directory was restored from a backup
tape.

If such an automated inconsistency check is implemented, it is desirable to reduce
the number of false positives generated by it. Such false positives are unusual
system data, which look suspicious to the investigator, but have been generated by
the system in the normal course of operation.

Although the investigator usually has a feeling for what kind of property should hold
in the evidential data, it may be difficult to see if the violation of that property is really
inconsistent with the normal processes in the system.

Contribution of this paper

To make the derivation of evidence inconsistency checks more scientific, we
explored the possibility to use the formal B Method for development of such checks.
This paper presents the approach and the results of that exploration.

Our approach

The B Method (Abrial, 1996) is a well-known formal method of systems
development. It has been used for design and implementation of large safety critical
systems in Europe and is gaining popularity in industry (Behm et al., 1999). The B
Method possesses several features that make it convenient for specification and
analysis of inconsistency checks for digital evidence. These are as follows.

• In the B Method, system functionality is described using a language that
resembles the algorithmic language found in computer science textbooks.
So, to specify how the system works, you simply write a high-level algorithm
of the system. Some parts of the algorithm may be left unspecified using non-
deterministic constructs.

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 3

• Once the system functionality is specified, the B Method provides a standard
way for specifying arbitrary properties of the system and verifying that these
properties are invariant, that is, that these properties always hold in the
system, if the system is functioning according to the specification.

• There are several semi-automatic tools that verify invariance of given
properties with respect to given system specification. They remove much of
tedious mathematical work usually connected with the use of formal methods.

The B Method has traditionally been used for designing safety-critical computer
systems. The idea there is to formulate safety requirements as “safety properties”
that must always hold in the system. The system is then designed in a controlled
fashion that maintains specified safety properties of the design. The automated tools
can be used to monitor the continuing conformance of the design to the safety
properties.

Our use of the B Method is slightly different. We use the B Method to verify our
intuition about forensically significant invariant properties of the system. Our
approach is as follows:

1. Express understanding of the system functionality as a high-level, partially

specified algorithm in the B formal language.
2. Specify properties (consistency criteria) that should always hold in the system in

the B formal language.
3. Use the automated verification tools of the B Method (ProB (Leuschel & Butler,

2003) and Atelier-B (Steria, 2001)) to check that the specified properties are,
indeed, invariant.

4. Write a program that inspects the evidential data and finds violations of the
identified invariant properties2 (inconsistency checking tool). The formal model is
used as a base for deriving the inconsistency checks implemented by the program.
The INVARIANT statement of the B model is negated and translated into an SQL
query for the special-purpose database engine that views operating system data
as a relational database. In this paper, the term inconsistency check refers to the
negated invariant properties.

This approach has been used to construct an inconsistency checker for analyzing
files stored on an FTP server, and finding presence or absence of files whose
timestamps are inconsistent with the FTP server’s log files. Such a tool is able to
identify files that were manipulated (created / modified / or deleted) by means other
than the FTP server. This work is described in Section 3 of this paper. Our findings
are two-fold:

1. Despite considerable time spent on the development and analysis of the FTP
server model, it was helpful because it helped us to establish the exact
mathematical formulation of the consistency properties that we identified, and

2 It is very important that the inconsistency checking program implements the property check

correctly. This issue, however, is not addressed in this paper, as the methods for deriving
correct programs from specifications are described elsewhere in the literature (e.g. in
(Morgan, 1994)).

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 4

2. Once consistency properties were formulated mathematically, if was very
straightforward to convert them into an executable program. Rather than
programming it in a general purpose programming language, such as C, C++,
Java, or Perl we used a database management system (SQLite) instead. The
use of SQL statements allowed very concise formulation of consistency
property checks.

Paper organization

The rest of the paper is organised into three sections.

Section 2 is a brief introduction into the relevant aspects of the B Method. It
discusses the use of state machines as models for real systems, covers relevant
parts of the B notation, and points out the tools supporting the B Method.
Furthermore, a methodology for expressing inconsistency checks using SQL is
described. Section 3 then gives an overview of the formal model of an FTP server,
and describes the implementation of an inconsistency-checking tool based on the
formal B model. The paper concludes with an analysis of advantages and
disadvantages of the proposed methodology in Section 4.

Section 2: Formal Background

 Introduction to the B Method

Digital systems in general can be modelled as so called (finite) state machines
(FSM). A state machine consists of a (finite) state space (containing all possible
states the system can be in) and transitions. A transition from one state to another
(triggered by some particular event) corresponds to a state change.

The B Method (Abrial, 1996) is based on the first-order predicate calculus and set
theory, and the concept of an abstract machine encapsulating a program state as
well as operations on that state. Abstract machines are similar to objects in an
object-oriented language like C++. Specification in B is done using the Abstract
Machine Notation (AMN), which resembles a programming language. The structure
of a basic B abstract machine is shown below.

The MACHINE clause gives the name of the abstract machine. It is followed by a
number of mandatory and optional sections that define individual aspects of the
abstract state machine. For example, necessary data types may be defined in the
SETS clause. Symbolic constants may be defined using the CONSTANTS clause,

MACHINE M(p)
SETS S
CONSTANTS C
PROPERTIES P
VARIABLES v
INVARIANT Inv(v)
INITIALISATION I
OPERATIONS
...
END

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 5

and associated properties and typing information for these constants may be defined
in PROPERTIES. State variables (memory elements of the machine) are defined in
the VARIABLES clause. The initial values of the memory elements are defined by
the INITIALISATION clause.

Table 1 - Description of B AMN substitutions
B AMN substitution Description Example
x:=e Assignment. The variable x is assigned

the value e.
x:=2
the new value of x is 2

S1||S2 Parallel composition. The substitutions
S1 and S2 are executed simultaneously
(i.e., in parallel).

x:=y|| y:=x
swaps the values of x and y (the
value of y is assigned to x and
simultaneously the old value of x
is assigned to y)

s←e Add at tail (sequence). Adds the value e
to the end of the sequence s.

(1,2,3) ← 4
produces (1,2,3,4)

s↓n Restrict at tail (sequence). Removes the
n first elements from the sequence s.

(1,2,3,4) ↓ 2
produces (3,4)

{e} R Domain subtraction. Removes the pairs
from the relation R, where the first
component of the pairs matches the
value e.

{A} {(B,1),(A,2),(C,3),(A,4)}
produces
{(B,1),(C,3)}

The functionality of the machine is specified in a programming-like language in the
OPERATIONS clause. It is a sequence of event definitions. An event definition is
akin to a procedure or function definition found in general purpose programming
languages. An event has a name and may have parameters. Each definition
describes how the state of the abstract machine must change in response to the
occurrence of the event. The idea is that the machine receives a sequence of
events from the outer world and changes its state in response to each received
event according to the given event definitions. The body of events is expressed
using B AMN substitutions (generalised assignments). A list of the substitutions used
in this paper is given in Table 1.

The invariant properties of the machine are specified in the INVARIANT clause.
These properties are, essentially, logical conditions specifying allowed combinations
of values in the state variables.

The B Method allows hierarchical composition of abstract machines, so that more
complex abstract machines can be built by combining simpler state machines. The
B Method has well refined rules that extend the user defined invariant properties of
the composite state machine with additional properties that preserve the invariant
properties of the component state machines. A good introduction to the B Method
can be found in e.g. (Schneider, 2001).

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 6

Verifying consistency properties for digital evidence using the B Method

One of the main benefits of constructing a formal B model is that it allows us to
rigorously verify the correctness of consistency properties for the digital evidence.
This is achieved by (1) formulating consistency properties of the model in the
INVARIANT clause and then (2) verifying the validity of the B model. Validity here
means that any state reachable by the B model satisfies the INVARIANT clause. The
B method provides a rigorous method for proving the validity of the model. That
method is supported by a number of automated tools, such as Atelier-B and ProB.

What does validity of the B model mean from a forensics point of view? To answer
this question, let us analyse the logical meaning of the term “inconsistent evidential
data” and how it relates to the B model.

In digital forensics, an investigator considers evidential data “consistent” when it
agrees with (1) the investigator’s understanding of how the evidential device works,
and (2) with the investigator’s hypothesis of the incident. If either of the two is
violated, the evidential data is considered by the investigator as “inconsistent”.
Thus, evidential data can be inconsistent in two senses:

(1) Evidential data may contradict the way digital device works, and/or
(2) It may contradict the hypothesis of the incident.

In a way, the second case is weaker than the first case, because if the evidential
data is inconsistent in the first case, it is also inconsistent in the second case.
However, the inverse is not always true. This paper discusses evidential data
inconsistencies only of the first type – those that contradict the way the device works.

The investigator collects data from the evidential device and tries to see if it is
consistent. Under the above restriction, evidential data is consistent if it corresponds
to a “consistent” (i.e. reachable) state of the device’s volatile memory, registers, and
non-volatile data storage. To see the distinction between consistent and inconsistent
states, consider Fig. 1 below. The big rectangle “A” in Fig. 1 represents all possible
combinations of bits in the device’s memory and data storage (some of these
combinations may never arise during the device’s operation).

Figure 1 - Illustration of B model validity. P is a set of model
states reachable from the initial state I. Inv is the set of states
that obey INVARIANT clause. B model is valid if P is contained
in Inv.

A

P I

Inv

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 7

The small circle labelled “I” represents the initial state of the device (the content of its
memory, registers, and data storage when the device is powered up). The curved
line that starts at “I” represents an example “path” of the device through the state
space as it switches from state to state during operation. The oval “P” represents all
“consistent” states – that is, states that may be reached by the device during its
operation. All states outside oval P are, therefore, “inconsistent”, because they
cannot be reached by the device during its normal operation.

The dashed-line polygon “Inv” that surrounds the oval P represents all states that
satisfy the INVARIANT properties. In the B Method, the model is valid, if for any
state reachable from the initial state of the model (i.e. for all states in the oval P), the
specified INVARIANT properties hold. In other words, the B method verifies only
that the states in P possess the INVARIANT properties, and no claim is made about
the states outside of P – they may or may not possess the INVARIANT properties.

To better see the forensic implications of this definition, the definition of B model
validity can be re-phrased according to a well known Boolean tautology
(contrapositive) PQQP ¬⇒¬≡⇒ as follows: In a valid B model, if the invariant
property does not hold for a given state, the state cannot be reached from the initial
state. That is:

1. if the evidential data does not satisfy the INVARIANT properties of the B
model, it represents a state that cannot be reached from the initial state of
the model and, therefore, such evidence is inconsistent (in Fig. 1 such a
state corresponds to a point outside of “Inv”);

2. if the evidence does satisfy the INVARIANT properties, nothing can be
inferred about consistency or inconsistency of the evidence. In Fig. 1 this
case corresponds to a point inside “Inv”, which may or may not be inside
the oval P.

Recall that our method of inconsistency check verification is as follows: (a) create a
B model of the device being forensically analysed; (b) add evidence consistency
properties into the INVARIANT clause of the created B model, and (c) check the
resulting B model is still valid. Once all of the steps are successfully performed we
know that

(a) The inconsistency check is correct. Any inconsistency that it finds
is indeed, an inconsistency.

(b) However, the inconsistency check may be incomplete. It may miss
some evidence inconsistencies. By strengthening the invariant of
our formal model (i.e., by adding more properties) we can make the
model more complete.

Note, that the incompleteness of the inconsistency check is not really a
problem. Many of the existing digital forensic tools are incomplete in the above
sense. Indeed, it is rather presumptuous to expect a digital forensic tool to find
all possible inconsistencies in the digital evidence. Much more important is the
fact that the verified inconsistency check is correct, and may be safely used in
the forensic analysis process.

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 8

Tools supporting the B Method

There are several tools that automate checking of invariant properties of the abstract
state machines. Two such tools – ProB (Leuschel & Butler, 2003) and Atelier-B
(Steria, 2001) – were used in this work.

ProB is an integrated development environment (IDE) for the B Method. It provides a
text editor, a syntax and type checker for verifying syntactical and type correctness
of abstract state machine specifications, temporal and constraint-based model
checkers, and an abstract state machine simulator.

The ProB tests invariant properties of the abstract state machine by subjecting the
machine to a random sequence of events and verifying that the specified invariant
properties hold after every event. Multiple random sequences can be employed to
make testing more thorough. Obviously, ProB testing is not exhaustive.

Atelier-B is another integrated development environment for the B Method. In
addition to syntax and type checking, it can verify invariant properties of abstract
state machines using semi-automated theorem proving. The advantage of
verification by theorem proving is that verification is exhaustive. This works as
follows.

First, several so-called “proof-obligations” are generated. These proof-obligations
are logical formulae that need to be “discharged” (i.e. mathematically proved to be
true) to guarantee that the invariant properties always hold. Atelier-B (Steria, 2001)
can generate these proof-obligations automatically from a B specification. Atelier-B
can then assist with the discharging of them using the built-in automatic and
interactive provers.

Unlike ProB, Atelier-B can guarantee that invariant properties always hold in the
model. This ability, however, comes at a price. The random testing offered by ProB
is completely automatic and requires minimal user involvement. The theorem
proving, however, is rarely fully automatic. User input is occasionally required to
suggest non-trivial proof-rules. The costs in terms of human labour required to figure
a correct proof may be quite high (in the order of days).

It is important to note that the B Method offers several different verification
techniques that provide a trade-off between the degree of automation and the
degree of assurance in the correctness of the invariant properties. This allows the
digital forensic analyst to choose which verification technique to use, depending on
the importance of the case and the stage of model development. In particular, we
found that ProB is very useful at the initial stages of formal development as it quickly
finds major problems in the formal model. Once the development of the formal
model is complete, higher degree of assurance can be achieved using theorem
proving.

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 9

Implementing inconsistency checks using SQL

The formalised consistency properties of a B model (the INVARIANT clause) are
written in the first-order logic extended with elements of the set theory. Structured
Query Language (SQL) is a popular database manipulation language, which is
based on the same theoretical basis.

To see how inconsistency checks can be implemented using SQL, observe first that
every invariant property (consistency criterion) is of the form

∀(x, y, z, …). (condition1 ∧ condition2 ∧ … ∧ conditionn ⇒ test) (†)
In plain English, this property means that logical condition test must hold for all
combinations of values of variables x, y, z, … that satisfy logical conditions
condition1 , condition2 , … conditionn . To find violations of this property we need to
search for combinations of values of x, y, z, … that satisfy logical conditions
condition1 , condition2 , … conditionn , but DO NOT satisfy the test.

Observe also that the values of variables are not arbitrary. One of the purposes of
conditions condition1 , condition2 , … conditionn is to specify the type and source of
values for variables used in the formula. For example, the condition

mtime ∈ TIMESTAMP
means that the variable mtime must hold a date/time value.

Therefore, to find violations of property (†) using SQL we must (1) import all sources
of values for variables x, y, z, … into a relational database as tables and (2) search
for combinations of values that satisfy logical conditions condition1, condition2 , …
conditionn , but do not satisfy the test condition. The second step can be performed
by a SELECT statement of the following general form:

SELECT * FROM table1 , table2 , … , tablem
WHERE
 condition1 AND
 condition2 AND
 …
 conditionn AND
 NOT test ;

Note that conditions that specify type and source of values for variables do not need
to be included into this SELECT statement, because such conditions are implicitly
satisfied by construction of database tables and by semantics of the SELECT
statement.

Note also that when some of the conditions condition1, condition2 , … conditionn are
of the form (†) themselves, they can be implemented using nested SELECT
statements. In some cases, the use of nested SELECT statements can be replaced
by appropriate use of aggregate functions, such as MAX and MIN, in combination
with GROUP BY clause.

Finally, instead of using a single complex SELECT statement, an inconsistency
check can be implemented by a sequence of simpler SELECT statements, where the

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 10

output of one SELECT statement is stored in an SQL view and processed by
subsequent SELECT statements.

Section 3: Development of an inconsistency-checking tool for FTP servers
using the B Method

Illegal file sharing using FTP servers

Uploading and downloading files on an FTP server is a very common way of file
sharing. Most operating systems have built-in FTP client software and setting-up an
FTP server is relatively uncomplicated. The access to an FTP server can be
restricted by user name and passwords. It makes FTP servers an attractive tool for
sharing illegal file material.

When a computer containing an FTP server with illegal material is seized during an
investigation, it is important to establish who is responsible for placing the illegal
material on the server. This may not be easy, because although it could be a user of
the computer, it is not uncommon to find poorly configured FTP servers exploited by
hackers and used by them to store illegal material (AusCERT, 2002). Nevertheless,
the FTP server does offer many clues to the identity of the perpetrator. Some of the
clues may be quite obvious, such as the user ID of the owner of file with illegal
content. Other clues are less obvious.

One such clue is obtained by checking timestamps on entries in the FTP log file and
comparing them against file timestamps in the FTP repository. Intuitively, we would
expect that

if some file is uploaded onto the FTP server, the timestamp

of that file in the FTP repository would be the same as the

timestamp on the upload event in the FTP log file.

(†)

A violation of this check seems to indicate that the file was created by writing directly
into the FTP repository, bypassing the FTP server.

As shown in the rest of this paper, this intuitive perception is not always correct. As
explained in the following sub-sections, the creation of a formal model of an FTP
server using the B Method helped us to clarify validity conditions for that check, and
to discover other related checks, which were subsequently implemented in an
inconsistency checking tool.

Overview of the FTP server model

As the first step in the formal development of the inconsistency checking tool, a
formal model of an FTP server was developed. It is schematically depicted in Figure
2. Since we are only interested in the relationship between timestamps on files and

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 11

on log file entries, a number of assumptions have been made to simplify the formal
model. These are as follows:

• Only the components relevant to the making and storage of timestamps are
modelled. This includes: the FTP file repository (called the fileStore), the
system clock, and the FTP log file.

• Files have numerical IDs (slot numbers) instead of textual names, because

we only use file names to distinguish files from each other. The name of a file
has no effect on its timestamps.

• There are no sub-directories in the FTP repository model, because the place

of a particular file in the file tree hierarchy does not affect its modification
timestamp3.

• Deleted files are left outside of the model scope. To formulate and analyse

consistency properties described in this paper the evidence available in
unallocated file entries was not necessary. For the sake of formal simplicity,
such evidence has been left outside of the model scope. Note, however, that
such evidence can be easily added into the model, if it is required for proving
some additional consistency property.

• Only the last modification time (mtime) of every file is modelled. Again, only

the last modification time was needed for formulating and reasoning about the
consistency properties described in this paper, and for the sake of formal
simplicity all other timestamps have been left outside of the model scope.

According to the above assumptions, the FTP file repository is modelled as an array
of file entries, where each entry stores information about one file attribute, namely
the last modification time (mtime). The elements of the array are referred-to by their
unique file IDs called slot numbers or slots. Note that it is easy to extend this model
to hold other file attributes as well.
A clock counter that is continuously updated models the progress of time, and we
model the modification of a file in the file system by assigning the current clock value
to the mtime attribute of the file.

3 This may not be the case for sub-directories, but we exclude them from consideration.

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 12

Figure 2 - Main elements of the FTP server model.

The FTP log file is modelled as a list of file modification events, where each log entry
is represented as a triple of the form (TStamp,Event,Slot). TStamp corresponds to
the time the event has occurred. Event identifies the type of event, and this can be
either MODIFY or DELETE, corresponding to file uploading and file deletion events,
respectively. Slot identifies at which position in the file system a file should be
modified/deleted in the case of a file modification/deletion event.

Next, we formalised the consistency properties for our model (i.e. the relations
between timestamps in the file store and timestamps in the log file). The first of these
properties corresponds to the informal consistency property (†) stated at the end of
the previous section. This was expressed as a logical formula in terms of our model,
whose exact meaning in plain English is as follows:

Consistency property 0. If the last MODIFY event (in the log file) for a file X is
not followed by a DELETE event, the timestamp of the last MODIFY event in
the log, should be equal to the timestamp on the file X.

During model creation, we realised that a number of other consistency properties
should hold in the model. These were also formalised and included into the
INVARIANT clause. These informal meaning of these additional properties is as
follows:

Consistency property 1. The order of timestamps reflects the order of
MODIFY events that produced these timestamps. That is, given two
timestamps, a timestamps with the greater value corresponds to the MODIFY
event which occurred later.

(12:00:00, modify, 0)
log

0

1

…

M
 fileStore

mtime: 12:00:00

slot: 0

12:00:35

(12:00:10, modify, 2)

(12:00:15, delete, 1)

(12:00:35, modify, N)

2

mtime: 12:00:10

slot: 2

mtime: 12:00:35

slot: N
…

clock

DELETE(slot)
MODIFY(slot)
CLK

Events:

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 13

Consistency property 2. If the last MODIFY event for a given file has a
corresponding DELETE event following it, then the file should not be present
in the file store; and vice versa – if there is a file present in the file store, then
the last event for that file must not be a DELETE event (it must be a MODIFY
event).

Overview of the formal model

We have used the B Method (Abrial, 1996) to express the abstract FTPServer model
formally. Using B, we specify the system state by introducing state variables
(introduced in the VARIABLES clause), and we model state transitions by means of
operations (introduced in the OPERATIONS clause). The requirements (properties)
that we want to verify to hold for our model are specified in the INVARIANT clause.
In our case, these properties are the three consistency conditions for modification
times presented in the previous subsection. We have used the Event-B (Métayer,
Abrial & Voisin, 2005) based approach, in which operations are viewed as events
triggered by the external environment (e.g., an application program modifying a file).
Events are specified as guarded substitutions in Event-B. These guarded
substitutions are of the form SELECT P THEN S END, or ANY params WHERE P
THEN S END in the case of parameterised events. The semantics of the guarded
substitutions is that an event is in the waiting (hibernating) state until the guard P
becomes true. When the guard P evaluates to true, the substitutions S are
performed. The complete B FTPServer model can be found in the appendix of this
paper. Next, we describe how the FTPServer events are specified in our formal
model. Intuitive graphical representations of the events (using UML activity
diagrams) are given next to the event definitions.

The clock event models the time progress in our system, and it is specified by an
assignment to the clk variable (incrementing the current value of clk), as shown
below.

clock =
BEGIN
 clk := clk + 1
END;

The clock event is enabled at all times (its guard is simply true), to model the
continuous progress of time.

The file modify event in our model is specified using the ANY guarded substitution
for introducing the local parameter slot, which identifies the position in the file system
(modelled by the state variable fileStore) where the file to be modified is located.
When the modify event is enabled, the action specified by our abstract model is to
assign the current value of the clock counter (modelled by the variable clk) to
position slot in the fileStore, as shown in the below extract.

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 14

ANY slot WHERE slot ∈ FILESLOT
THEN
 fileStore(slot) := clk ||
 log := log ← (clk,MODIFY,slot)

 END;

Simultaneously, we append an entry (clk,MODIFY,slot) to the end of the transaction
log, to identify which slot has been affected by the modify event. We have modelled
the transaction log using a sequence variable log.

In addition to modelling modification of files, we also model the deletion of files in our
file store by the delete event. The body of the delete event is shown below.

ANY slot WHERE slot ∈ FILESLOT
∧ slot ∈ dom(fileStore)
THEN
 fileStore := {slot} fileStore ||
 log := log ← (clk,DELETE,slot)
END

The delete event is enabled when some slot exists in the file store (i.e., there exists
some modification time record for the slot). The body of the event is specified using
the domain subtraction substitution, which has the effect of removing the
modification time record for the slot in question from the file store. Similarly to the
modify event, an entry of the form (clk,DELETE,slot) is appended to the end of the
transaction log, to indicate that a deletion event for the specified slot occurred at time
clk.

It is possible that a log might be truncated (or completely cleared) when a certain
limit has been reached. This happens, for example, when the server administrator
erases old log files. Our specification takes this possibility into account by
introduction of the trunc_log event. The trunc_log event becomes enabled when the
current size of the transaction log exceeds the maximum size allowed (modelled by
the constant max_log_size). The body of trunc_log is specified as follows:

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 15

ANY tval WHERE tval ∈ N1
 ∧ tval ≤ max_log_size
THEN
 log := log↓tval
END

It non-deterministically selects a positive natural number tval less than the maximum
allowed log size (max_log_size). The substitution log := log�tval then drops the first
tval elements from the beginning of the log sequence. Removal of elements from
the log results in the loss of information about the past operation of the system. After
truncation there may be files in the file store that no longer have associated entries in
the log. The formal model takes this into account by requiring the formulated
invariant properties to hold only for those slots that are (1) present in the fileStore
and (2) have associated entries in the log.

The consistency properties that should hold in our model are then expressed as part
of the state invariant. As an example, the first part of consistency property 1 (see
previous section) is introduced into the invariant in the following way:

∀(slotX,slotY).(slotX ∈ dom(fileStore) ∧ slotY ∈ dom(fileStore) ∧ (slotX ≠ slotY) ∧
LAST_INDEX(fileStore(slotX),MODIFY,slotX) < LAST_INDEX(fileStore(slotY),MODIFY,slotY)

⇒ fileStore(slotX) ≤ fileStore(slotY))

Universal quantification (is used to state that the property should hold for all distinct
values slotX and slotY in the fileStore. For such slots, in case the last occurrence of
a modify event for slotX is preceding the last occurrence of a modify event for slotY,
it needs to be the case (logical implication) that the modification timestamp of slotX
in the fileStore is less than or equal to the modification timestamp of slotY. The
LAST_INDEX definition returns the index position for the last occurrence of an event
(here, modify) for a given slot in the log. The other consistency properties for FTP
are formulated in a similar way.

We have used the ProB (Leuschel & Butler, 2003) tool (the animator and the
temporal model checker) for the initial validation of the B formal model, and the
automatic and interactive provers of Atelier-B (Steria, 2001) have been used to
discharge the associated consistency proof obligations.

ConAlyzer: an inconsistency checker for FTP server logs

Apart from rigorous verification of consistency properties, another major benefit of
using the B Method turned out to be the ease of implementing the formalised
inconsistency checker in software. Having formally verified consistency properties of

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 16

FTP servers, we found that these properties could be easily converted into a handful
of SQL statements searching evidential data for violations of these properties.

Initially, we considered the use of the Microsoft LogParser toolkit (Microsoft, 2005)
as the basis of our inconsistency checker. The LogParser toolkit is an incident
analysis tool that can extract information from many types of operating system
objects (logs, file systems, etc.) and filter this information using SQL queries.
Unfortunately, the subset of SQL supported by the current implementation of the
LogParser toolkit is rather limited. In particular, it cannot perform SQL queries that
relate (join) several different data sources. This was perceived as a major limitation
from consistency checking point of view, because much of unobvious
inconsistencies are found by comparing information contained in different sources of
evidence.

In the end it was decided to use an open sourced, embeddable database engine
SQLite4 as the basis for our FTP server inconsistency checking tool, which has been
called “ConAlyzer” (Consistency Analyzer). The default data import capabilities of
SQLite have been expanded with data carving functionality (based on regular
expressions), and the ability to execute third party utilities. ConAlyzer GUI is written
in Tcl/Tk. A screenshot of the GUI is shown in Figure 3.

Figure 3 – ConAlyzer GUI.

4 http://www.sqlite.org

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 17

ConAlyzer input consists of two files: the FTP server log file, and the file with a list of
file timestamps. ConAlyzer creates two tables (fileStore and log) and imports the
content of both files into these tables. After that, ConAlyzer performs consistency
checks on the information contained in the tables.

In our experiments we copied the FTP log file from the live system and used the
grave-robber tool5 to obtain file timestamp information about the files in the FTP file
repository. Although we performed a “live” analysis of the system, there same kind
of information can be obtained from disk images using a variety of digital forensics
tools – both commercial (EnCase, FTK) and open source (The Sleuth Kit’s icat,
fls/ils).

ConAlyzer is not yet publicly released, but if you are interested in experimenting with
it, please contact the authors directly.

Section 4: Conclusions

In this paper, the application of the B Method for the analysis of correctness of digital
evidence inconsistency checks has been explored. The following positive aspects
have been identified:

1. The use of formal methods facilitates rigorous analysis of inconsistency
checks.

2. The need to develop a formal model helps the investigator to better
understand the system.

3. Formal inconsistency checks can be converted into succinct SQL
statements.

4. An SQL-based tool supporting the automatic analysis of inconsistency
checks has been developed.

On the negative side, formal analysis requires considerable time to develop a formal
model and to formalise properties. The not-so-mathematical syntax of B helps in this
process. Formal development would be justified, when correctness of analysis is
crucial. This could be forensic analysis in high-profile cases, and development of
commercial digital forensics tools.

The application of formal methods to the analysis of digital evidence is relatively
new, and therefore it does not exist much related work in the area. Stephenson
(2003) presents an approach to the formal modelling of root cause analysis, for
which he employs coloured Petri nets. The idea of the root cause analysis is to trace
the origin (root cause) of an incident in order to be able to prevent similar incidents
from occurring in the future. The use of formal modelling helps to bring more
confidence into such analysis. Leigland and Krings (2004) explore a formalisation of
digital forensics.

5 http://www.fish2.com/tct/

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 18

Our future research will concentrate on extending the formal analysis to other areas
of digital forensics, and on the application of the formal approach to the analysis of
other types of forensic artefacts.

© Copyright 2007 International Journal of Digital Evidence

About the Authors

Dr. Pavel Gladyshev is a lecturer in the School of Computer Science and Informatics
at University College Dublin, where he manages the MSc programme in Forensic
Computing and Cybercrime Investigation. His research interests are in the area of
information systems security and digital forensics. Before joining UCD as a lecturer,
Dr. Gladyshev worked as a senior consultant in information systems. Dr. Gladyshev
holds PhD and MSc degrees in Computer Science and a primary degree in computer
engineering. pavel.gladychev@ucd.ie

Andreas Enbacka is conducting research in the area of theoretical digital forensics.
His MSc thesis work in Computer Science was on formal methods based
approaches to digital forensics. Mr. Enbacka is a member of Formal Methods Europe
(FME), and he also works as a software engineer. aenbacka@abo.fi

References

Abrial J.-R. (1996) The B-Book: Assigning Programs to Meanings. Cambridge

University Press.

Australian Computer Emergency Response Team (AusCERT) (2002) Alert AA-

2002.03 File-Sharing Activity Part 2 of 2 - Increased intruder attacks against
servers to expand illegal file sharing networks. Retrieved March 19, 2007,
from http://www.auscert.org.au/render.html?it=2229

Behm P., et al. (1999) METEOR: A successful application of B in a large project. In

Wing et al (Eds.), Proc. of the World Congress on Formal Methods. LNCS
1709. Springer Verlag.

Leigland R., Krings A. W. (2004) A Formalization of Digital Forensics. International

Journal of Digital Evidence, 3(2).

Leuschel M., Butler M. (2003) ProB: A Model Checker for B. In Keijiro Araki, Stefania

Gnesi, and Dino Mandrioli (Eds.), Proceedings of FME 2003, Pisa, Italy, pp.
855–874. LNCS 2805, Springer Verlag.

Métayer C., Abrial J.-R., Voisin L. (2005) Event-B Language, RODIN (Rigorous

Open Development Environment for Complex Systems) Project IST-511599
Deliverable 3.2. Retrieved March 19, 2007, from
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 19

Microsoft (2005) The LogParser toolkit. Retrieved March 19, 2007, from
http://www.microsoft.com/technet/scriptcenter/tools/logparser/

Morgan C. (1994) Programming from Specifications (2nd Ed.). Prentice Hall.

Schneider S. (2001) The B-Method: An Introduction. Palgrave.

Stephenson P. (2003) Formal Modeling of Post-Incident Root Cause Analysis.

International Journal of Digital Evidence, 2(2).

Steria (2001) Atelier B. User and Reference Manuals, Aix-en-Provence, France.

Retrieved March 19, 2007, from
http://www.atelierb.societe.com/index_uk.html

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 20

Appendix: The formal B FTPServer specification

MACHINE FTPServer

DEFINITIONS
 MODIFY == 1;
 DELETE == 2;
 FILESLOT == N ;
 TIMESTAMP == N ;
 EVENT == N ;
 LAST_INDEX(X,Y,Z) == max(dom(log {(XαYαZ)}))

CONSTANTS max_log_size

PROPERTIES max_log_size ∈ N1

VARIABLES fileStore, clk, log

INVARIANT

fileStore ∈ FILESLOT TIMESTAMP ∧
clk ∈ N ∧
log ∈ seq(TIMESTAMP×EVENT×FILESLOT) ∧

 /* Property 0 */

 (∀(slot,mtime,dtime).(slot ∈ TIMESTAMP ∧ mtime ∈ TIMESTAMP ∧ dtime ∈ TIMESTAMP ∧
(mtime,MODIFY,slot) ∈ ran(log) ∧
 ∀otime.(otime ∈ TIMESTAMP ∧ (otime,MODIFY,slot) ∈ ran(log) ⇒ mtime≥otime) ∧
 dtime>mtime ∧ (dtime,DELETE,slot) ∉ ran(log)

⇒ fileStore(slot) = mtime)) ∧

/* Property 1 */

(∀(slotX,slotY).((slotX ∈ dom(fileStore) ∧ (fileStore(slotX),MODIFY,slotX) ∈ ran(log) ∧ slotY ∈
dom(fileStore) ∧ (fileStore(slotY),MODIFY,slotY) ∈ ran(log) ∧ (slotX ≠ slotY)) ⇒
(LAST_INDEX(fileStore(slotX),MODIFY,slotX) < LAST_INDEX(fileStore(slotY),MODIFY,slotY)
 ⇒ fileStore(slotX) ≤ fileStore(slotY)))) ∧

 (∀(slotX,slotY).((slotX ∈ dom(fileStore) ∧ (fileStore(slotX),MODIFY,slotX) ∈ ran(log) ∧ slotY ∈
dom(fileStore) ∧ (fileStore(slotY),MODIFY,slotY) ∈ ran(log) ∧ (slotX ≠ slotY)) ⇒
(fileStore(slotX) < fileStore(slotY)

⇒ (LAST_INDEX(fileStore(slotX),MODIFY,slotX) <
LAST_INDEX(fileStore(slotY),MODIFY,slotY))))) ∧

 /* Property 2 */

∀(slot,mtime,dtime).(slot ∈ TIMESTAMP ∧ mtime ∈ TIMESTAMP ∧ dtime ∈ TIMESTAMP ∧
(mtime,MODIFY,slot) ∈ ran(log) ∧ (dtime,DELETE,slot) ∈ran(log) ∧ dtime>mtime ∧
LAST_INDEX(mtime,MODIFY,slot) < LAST_INDEX(dtime,DELETE,slot) ∧ ∀otime.(otime ∈
TIMESTAMP ∧ otime≥dtime ⇒ (otime,MODIFY,slot) ∉ ran(log))
 ⇒ slot ∉ dom(fileStore))

International Journal of Digital Evidence Fall 2007, Volume 6, Issue 2

www.ijde.org 21

INITIALISATION fileStore := ∅ || clk := 0 || log := [] /* initial state of the model */

OPERATIONS /* events of the model */

clock =
 BEGIN
 clk := clk + 1
 END;

trunc_log =
 SELECT size(log) ≥ max_log_size
 THEN
 ANY tval WHERE tval ∈ _4_s20 N1 ∧ tval ≤ max_log_size
 THEN
 log := log↓tval
 END
 END;

modify =
 ANY slot WHERE slot ∈ FILESLOT
 THEN
 fileStore(slot) := clk ||
 log := log ← (clkαMODIFYαslot)
 END;

delete =
 ANY slot WHERE slot ∈ FILESLOT ∧ slot ∈ dom(fileStore)
 THEN
 fileStore := {slot} fileStore ||
 log := log ← (clkαDELETEαslot)
 END

END

