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Abstract 
 
Inconsistencies in various data structures, such as missing log records and modified 
operating system files, have long been used by intrusion investigators and forensic 
analysts as indicators of suspicious activity.  This paper describes a rigorous 
methodology for developing such inconsistency checks and verifying their 
correctness.  It is based on the use of the B Method – a formal method of software 
development.  The idea of the methodology is to (1) formulate a state-machine 
model of the (sub)system in which inconsistencies are being detected, (2) formulate 
consistency criteria for the state of that model, (3) rigorously verify correctness of 
these criteria using the B Method, and (4) automatically search evidential data for 
violations of the formulated consistency criteria using ConAlyzer utility developed for 
this purpose.  The methodology is illustrated on an FTP server example. 
 
 
Section 1: Introduction 
 
Automated checking for inconsistencies in evidential data 
 
Much of advanced digital forensics comes from observations of how the operating 
system manipulates computer’s data storage and how various user activities modify 
operating systems data.  For example, when the user logs into the system, a 
corresponding log file entry is placed into the system log, and the time of the last 
access to the user configuration data is modified. If the user logs into the system 
remotely, some record of the incoming Internet connection may be created (e.g. a 
record in the firewall log file).  Usually user activity leaves multiple “traces” in 
different data structures.  By analysing file and registry timestamps, system log file 
entries, browser history records, deleted temporary files, and other system and 
application “artefacts” investigator is able to portray past user activity in great detail. 
   
An obvious defence against digital forensics is to try to hide these traces through 
deliberate modification of system data - for example by deleting offending entries in 
the log file.  A more systematic approach is taken by the Metasploit Antiforensics 
Framework project1, which is developing a collection of tools for hiding user traces in 
various system data structures. 

                                                 
1 http://www.metasploit.com/ 
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Although it is possible to modify system data structures, it is currently difficult to 
modify them in a consistent manner, so that effects of user actions are cancelled 
across multiple data structures.  Discovery of inconsistencies in system data can 
potentially lead to an investigative breakthrough.  
 
Discovery of inconsistencies is not a straightforward task given the large volume of 
data normally processed in digital investigations.  It is possible, however, to 
automate this process to some degree by programming automated checks that scan 
through the evidential data and check it for violations of some property that must 
invariably hold in the system data if the system operates normally.   
 
For example, when a sub-directory is created in the FAT file system, the creation 
time of the ‘.’ and ‘..’ entries within that directory is equal to the creation time of the 
directory’s entry in the parent directory.  This condition may be violated, for example, 
when the directory is restored from a backup tape.  In which case the creation time 
for the sub-directory’s entry is taken from the tape, while the creation time of the ‘.’ 
and ‘..’ entries is the restoration time.  A violation of this relation between 
timestamps, therefore, may indicate that the directory was restored from a backup 
tape. 
 
If such an automated inconsistency check is implemented, it is desirable to reduce 
the number of false positives generated by it.  Such false positives are unusual 
system data, which look suspicious to the investigator, but have been generated by 
the system in the normal course of operation.  
 
Although the investigator usually has a feeling for what kind of property should hold 
in the evidential data, it may be difficult to see if the violation of that property is really 
inconsistent with the normal processes in the system.   
 
Contribution of this paper 
 
To make the derivation of evidence inconsistency checks more scientific, we 
explored the possibility to use the formal B Method for development of such checks.  
This paper presents the approach and the results of that exploration.  
 
Our approach 
 
The B Method (Abrial, 1996) is a well-known formal method of systems 
development.  It has been used for design and implementation of large safety critical 
systems in Europe and is gaining popularity in industry (Behm et al., 1999). The B 
Method possesses several features that make it convenient for specification and 
analysis of inconsistency checks for digital evidence. These are as follows. 
 

• In the B Method, system functionality is described using a language that 
resembles the algorithmic language found in computer science textbooks.  
So, to specify how the system works, you simply write a high-level algorithm 
of the system.  Some parts of the algorithm may be left unspecified using non-
deterministic constructs. 
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• Once the system functionality is specified, the B Method provides a standard 
way for specifying arbitrary properties of the system and verifying that these 
properties are invariant, that is, that these properties always hold in the 
system, if the system is functioning according to the specification.  

• There are several semi-automatic tools that verify invariance of given 
properties with respect to given system specification. They remove much of 
tedious mathematical work usually connected with the use of formal methods. 

 
The B Method has traditionally been used for designing safety-critical computer 
systems.  The idea there is to formulate safety requirements as “safety properties” 
that must always hold in the system. The system is then designed in a controlled 
fashion that maintains specified safety properties of the design.  The automated tools 
can be used to monitor the continuing conformance of the design to the safety 
properties. 
 
Our use of the B Method is slightly different.  We use the B Method to verify our 
intuition about forensically significant invariant properties of the system.  Our 
approach is as follows: 
 
1.  Express understanding of the system functionality as a high-level, partially   

specified algorithm in the B formal language.   
2.  Specify properties (consistency criteria) that should always hold in the system in 

the B formal language.  
3.  Use the automated verification tools of the B Method (ProB (Leuschel & Butler, 

2003) and Atelier-B (Steria, 2001)) to check that the specified properties are, 
indeed, invariant.   

4.  Write a program that inspects the evidential data and finds violations of the 
identified invariant properties2 (inconsistency checking tool). The formal model is 
used as a base for deriving the inconsistency checks implemented by the program.  
The INVARIANT statement of the B model is negated and translated into an SQL 
query for the special-purpose database engine that views operating system data 
as a relational database. In this paper, the term inconsistency check refers to the 
negated invariant properties. 

 
This approach has been used to construct an inconsistency checker for analyzing 
files stored on an FTP server, and finding presence or absence of files whose 
timestamps are inconsistent with the FTP server’s log files.   Such a tool is able to 
identify files that were manipulated (created / modified / or deleted) by means other 
than the FTP server.  This work is described in Section 3 of this paper.  Our findings 
are two-fold: 
 

1. Despite considerable time spent on the development and analysis of the FTP 
server model, it was helpful because it helped us to establish the exact 
mathematical formulation of the consistency properties that we identified, and  

                                                 
2 It is very important that the inconsistency checking program implements the property check 

correctly. This issue, however, is not addressed in this paper, as the methods for deriving 
correct programs from specifications are described elsewhere in the literature (e.g. in 
(Morgan, 1994)). 
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2. Once consistency properties were formulated mathematically, if was very 
straightforward to convert them into an executable program.  Rather than 
programming it in a general purpose programming language, such as C, C++, 
Java, or Perl we used a database management system (SQLite) instead.  The 
use of SQL statements allowed very concise formulation of consistency 
property checks. 

 
Paper organization 
 
The rest of the paper is organised into three sections.  
 
Section 2 is a brief introduction into the relevant aspects of the B Method. It 
discusses the use of state machines as models for real systems, covers relevant 
parts of the B notation, and points out the tools supporting the B Method. 
Furthermore, a methodology for expressing inconsistency checks using SQL is 
described.  Section 3 then gives an overview of the formal model of an FTP server, 
and describes the implementation of an inconsistency-checking tool based on the 
formal B model. The paper concludes with an analysis of advantages and 
disadvantages of the proposed methodology in Section 4. 
 
Section 2: Formal Background 
 
 Introduction to the B Method  
 
Digital systems in general can be modelled as so called (finite) state machines 
(FSM). A state machine consists of a (finite) state space (containing all possible 
states the system can be in) and transitions. A transition from one state to another 
(triggered by some particular event) corresponds to a state change.  
 
The B Method (Abrial, 1996) is based on the first-order predicate calculus and set 
theory, and the concept of an abstract machine encapsulating a program state as 
well as operations on that state. Abstract machines are similar to objects in an 
object-oriented language like C++.  Specification in B is done using the Abstract 
Machine Notation (AMN), which resembles a programming language. The structure 
of a basic B abstract machine is shown below.  
 
 
 
 
 
 
 
 
 
 
 
The MACHINE clause gives the name of the abstract machine.  It is followed by a 
number of mandatory and optional sections that define individual aspects of the 
abstract state machine.  For example, necessary data types may be defined in the 
SETS clause.  Symbolic constants may be defined using the CONSTANTS clause, 

MACHINE M(p) 
SETS S 
CONSTANTS C 
PROPERTIES P 
VARIABLES v 
INVARIANT Inv(v) 
INITIALISATION I 
OPERATIONS 
... 
END 
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and associated properties and typing information for these constants may be defined 
in PROPERTIES.  State variables (memory elements of the machine) are defined in 
the VARIABLES clause.  The initial values of the memory elements are defined by 
the INITIALISATION clause.   
 

Table 1 - Description of B AMN substitutions 
B AMN substitution Description Example 
x:=e Assignment. The variable x is assigned 

the value e. 
x:=2 
the new value of x is 2 

S1||S2 Parallel composition. The substitutions 
S1 and S2 are executed simultaneously 
(i.e., in parallel). 

x:=y|| y:=x 
swaps the values of x and y (the 
value of y is assigned to x and 
simultaneously the old value of x 
is assigned to y) 

s←e Add at tail (sequence). Adds the value e 
to the end of the sequence s. 

(1,2,3) ← 4 
produces (1,2,3,4) 

s↓n Restrict at tail (sequence). Removes the 
n first elements from the sequence s. 

(1,2,3,4) ↓ 2 
produces (3,4) 

{e} R Domain subtraction. Removes the pairs 
from the relation R, where the first 
component of the pairs matches the 
value e. 

{A} {(B,1),(A,2),(C,3),(A,4)} 
produces 
{(B,1),(C,3)} 

 

The functionality of the machine is specified in a programming-like language in the 
OPERATIONS clause. It is a sequence of event definitions.  An event definition is 
akin to a procedure or function definition found in general purpose programming 
languages. An event has a name and may have parameters. Each definition 
describes how the state of the abstract machine must change in response to the 
occurrence of the event.  The idea is that the machine receives a sequence of 
events from the outer world and changes its state in response to each received 
event according to the given event definitions. The body of events is expressed 
using B AMN substitutions (generalised assignments). A list of the substitutions used 
in this paper is given in Table 1. 
 
The invariant properties of the machine are specified in the INVARIANT clause. 
These properties are, essentially, logical conditions specifying allowed combinations 
of values in the state variables.   
 
The B Method allows hierarchical composition of abstract machines, so that more 
complex abstract machines can be built by combining simpler state machines.  The 
B Method has well refined rules that extend the user defined invariant properties of 
the composite state machine with additional properties that preserve the invariant 
properties of the component state machines. A good introduction to the B Method 
can be found in e.g. (Schneider, 2001). 
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Verifying consistency properties for digital evidence using the B Method 
 

One of the main benefits of constructing a formal B model is that it allows us to 
rigorously verify the correctness of consistency properties for the digital evidence. 
This is achieved by (1) formulating consistency properties of the model in the 
INVARIANT clause and then (2) verifying the validity of the B model. Validity here 
means that any state reachable by the B model satisfies the INVARIANT clause. The 
B method provides a rigorous method for proving the validity of the model. That 
method is supported by a number of automated tools, such as Atelier-B and ProB. 
 
What does validity of the B model mean from a forensics point of view? To answer 
this question, let us analyse the logical meaning of the term “inconsistent evidential 
data” and how it relates to the B model.  
 
In digital forensics, an investigator considers evidential data “consistent” when it 
agrees with (1) the investigator’s understanding of how the evidential device works, 
and (2) with the investigator’s hypothesis of the incident.  If either of the two is 
violated, the evidential data is considered by the investigator as “inconsistent”.   
Thus, evidential data can be inconsistent in two senses: 
 

(1) Evidential data may contradict the way digital device works, and/or  
(2) It may contradict the hypothesis of the incident. 
 

In a way, the second case is weaker than the first case, because if the evidential 
data is inconsistent in the first case, it is also inconsistent in the second case.  
However, the inverse is not always true.  This paper discusses evidential data 
inconsistencies only of the first type – those that contradict the way the device works. 
 
The investigator collects data from the evidential device and tries to see if it is 
consistent. Under the above restriction, evidential data is consistent if it corresponds 
to a “consistent” (i.e. reachable) state of the device’s volatile memory, registers, and 
non-volatile data storage. To see the distinction between consistent and inconsistent 
states, consider Fig. 1 below. The big rectangle “A” in Fig. 1 represents all possible 
combinations of bits in the device’s memory and data storage (some of these 
combinations may never arise during the device’s operation).   

Figure 1 -  Illustration of B model validity. P is a set of model 
states reachable from the initial state I.  Inv is the set of states 
that obey INVARIANT clause. B model is valid if P is contained 
in Inv. 

 
 
 
 
 
 
 
 
 

A 

 
P I

Inv
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The small circle labelled “I” represents the initial state of the device (the content of its 
memory, registers, and data storage when the device is powered up).  The curved 
line that starts at “I” represents an example “path” of the device through the state 
space as it switches from state to state during operation.  The oval “P” represents all 
“consistent” states – that is, states that may be reached by the device during its 
operation.  All states outside oval P are, therefore, “inconsistent”, because they 
cannot be reached by the device during its normal operation.   
 
The dashed-line polygon “Inv” that surrounds the oval P represents all states that 
satisfy the INVARIANT properties.  In the B Method, the model is valid, if for any 
state reachable from the initial state of the model (i.e. for all states in the oval P), the 
specified INVARIANT properties hold.  In other words, the B method verifies only 
that the states in P possess the INVARIANT properties, and no claim is made about 
the states outside of P – they may or may not possess the INVARIANT properties.  
 
To better see the forensic implications of this definition, the definition of B model 
validity can be re-phrased according to a well known Boolean tautology 
(contrapositive) PQQP ¬⇒¬≡⇒  as follows: In a valid B model, if the invariant 
property does not hold for a given state, the state cannot be reached from the initial 
state.  That is: 
 

1. if the evidential data does not satisfy the INVARIANT properties of the B 
model, it represents a state that cannot be reached from the initial state of 
the model and, therefore, such evidence is inconsistent (in Fig. 1 such a 
state corresponds to a point outside of “Inv”); 

2.  if the evidence does satisfy the INVARIANT properties, nothing can be 
inferred about  consistency or inconsistency of the evidence.  In Fig. 1 this 
case corresponds to a point inside “Inv”, which may or may not be inside 
the oval P. 

 
Recall that our method of inconsistency check verification is as follows: (a) create a 
B model of the device being forensically analysed; (b) add evidence consistency 
properties into the INVARIANT clause of the created B model, and (c) check the 
resulting B model is still valid.  Once all of the steps are successfully performed we 
know that  

(a) The inconsistency check is correct.  Any inconsistency that it finds 
is indeed, an inconsistency. 

(b) However, the inconsistency check may be incomplete.  It may miss 
some evidence inconsistencies. By strengthening the invariant of 
our formal model (i.e., by adding more properties) we can make the 
model more complete. 

Note, that the incompleteness of the inconsistency check is not really a 
problem.  Many of the existing digital forensic tools are incomplete in the above 
sense.  Indeed, it is rather presumptuous to expect a digital forensic tool to find 
all possible inconsistencies in the digital evidence. Much more important is the 
fact that the verified inconsistency check is correct, and may be safely used in 
the forensic analysis process. 
 



International Journal of Digital Evidence                                Fall 2007, Volume 6, Issue 2 
 

www.ijde.org  8

Tools supporting the B Method 
 
There are several tools that automate checking of invariant properties of the abstract 
state machines.  Two such tools – ProB (Leuschel & Butler, 2003) and Atelier-B 
(Steria, 2001) – were used in this work. 
 
ProB is an integrated development environment (IDE) for the B Method. It provides a 
text editor, a syntax and type checker for verifying syntactical and type correctness 
of abstract state machine specifications, temporal and constraint-based model 
checkers, and an abstract state machine simulator. 
 
The ProB tests invariant properties of the abstract state machine by subjecting the 
machine to a random sequence of events and verifying that the specified invariant 
properties hold after every event.  Multiple random sequences can be employed to 
make testing more thorough. Obviously, ProB testing is not exhaustive.  
 
Atelier-B is another integrated development environment for the B Method.  In 
addition to syntax and type checking, it can verify invariant properties of abstract 
state machines using semi-automated theorem proving.  The advantage of 
verification by theorem proving is that verification is exhaustive.  This works as 
follows. 
 
First, several so-called “proof-obligations” are generated.  These proof-obligations 
are logical formulae that need to be “discharged” (i.e. mathematically proved to be 
true) to guarantee that the invariant properties always hold. Atelier-B (Steria, 2001) 
can generate these proof-obligations automatically from a B specification.  Atelier-B 
can then assist with the discharging of them using the built-in automatic and 
interactive provers.  
 
Unlike ProB, Atelier-B can guarantee that invariant properties always hold in the 
model. This ability, however, comes at a price. The random testing offered by ProB 
is completely automatic and requires minimal user involvement. The theorem 
proving, however, is rarely fully automatic.  User input is occasionally required to 
suggest non-trivial proof-rules.  The costs in terms of human labour required to figure 
a correct proof may be quite high (in the order of days). 
 
It is important to note that the B Method offers several different verification 
techniques that provide a trade-off between the degree of automation and the 
degree of assurance in the correctness of the invariant properties.  This allows the 
digital forensic analyst to choose which verification technique to use, depending on 
the importance of the case and the stage of model development. In particular, we 
found that ProB is very useful at the initial stages of formal development as it quickly 
finds major problems in the formal model.  Once the development of the formal 
model is complete, higher degree of assurance can be achieved using theorem 
proving. 
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Implementing inconsistency checks using SQL 
 
The formalised consistency properties of a B model (the INVARIANT clause) are 
written in the first-order logic extended with elements of the set theory.   Structured 
Query Language (SQL) is a popular database manipulation language, which is 
based on the same theoretical basis. 
 
To see how inconsistency checks can be implemented using SQL, observe first that 
every invariant property (consistency criterion) is of the form  

∀(x, y, z, …). (condition1 ∧ condition2 ∧ … ∧ conditionn  ⇒ test)              (†) 
In plain English, this property means that logical condition test must hold for all 
combinations of values of variables x, y, z, … that satisfy logical conditions 
condition1 , condition2 , … conditionn  .  To find violations of this property we need to 
search for combinations of values of  x, y, z, … that satisfy logical conditions 
condition1 , condition2 , … conditionn  , but DO NOT satisfy the test. 
 
Observe also that the values of variables are not arbitrary.  One of the purposes of 
conditions condition1 , condition2 , … conditionn  is to specify the type and source of 
values for variables used in the formula. For example, the condition  

mtime ∈ TIMESTAMP 
means that the variable mtime must hold a date/time value. 
 
Therefore, to find violations of property (†) using SQL we must (1) import all sources 
of values for variables x, y, z, … into a relational database as tables and (2) search 
for combinations of values that satisfy logical conditions condition1, condition2 , … 
conditionn , but do not satisfy the test condition.  The second step can be performed 
by a SELECT statement of the following general form: 
 

SELECT * FROM table1 , table2 , … , tablem 
WHERE 
   condition1 AND  
   condition2  AND 
   …  
   conditionn  AND 
   NOT test ; 

    
Note that conditions that specify type and source of values for variables do not need 
to be included into this SELECT statement, because such conditions are implicitly 
satisfied by construction of database tables and by semantics of the SELECT 
statement. 
 
Note also that when some of the conditions condition1, condition2 , … conditionn  are 
of the form (†) themselves, they can be implemented using nested SELECT 
statements.  In some cases, the use of nested SELECT statements can be replaced 
by appropriate use of aggregate functions, such as MAX and MIN, in combination 
with GROUP BY clause.  
 
Finally, instead of using a single complex SELECT statement, an inconsistency 
check can be implemented by a sequence of simpler SELECT statements, where the 
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output of one SELECT statement is stored in an SQL view and processed by 
subsequent SELECT statements. 
 
 
Section 3: Development of an inconsistency-checking tool for FTP servers 
using the B Method 
 
Illegal file sharing using FTP servers 
 
Uploading and downloading files on an FTP server is a very common way of file 
sharing.  Most operating systems have built-in FTP client software and setting-up an 
FTP server is relatively uncomplicated.  The access to an FTP server can be 
restricted by user name and passwords. It makes FTP servers an attractive tool for 
sharing illegal file material.   
 
When a computer containing an FTP server with illegal material is seized during an 
investigation, it is important to establish who is responsible for placing the illegal 
material on the server.  This may not be easy, because although it could be a user of 
the computer, it is not uncommon to find poorly configured FTP servers exploited by 
hackers and used by them to store illegal material (AusCERT, 2002). Nevertheless, 
the FTP server does offer many clues to the identity of the perpetrator.  Some of the 
clues may be quite obvious, such as the user ID of the owner of file with illegal 
content.  Other clues are less obvious.  
 
One such clue is obtained by checking timestamps on entries in the FTP log file and 
comparing them against file timestamps in the FTP repository.  Intuitively, we would 
expect that  
 

if some file is uploaded onto the FTP server, the timestamp 

of that file in the FTP repository would be the same as the 

timestamp on the upload event in the FTP log file. 

(†) 

 

A violation of this check seems to indicate that the file was created by writing directly 
into the FTP repository, bypassing the FTP server. 
 
As shown in the rest of this paper, this intuitive perception is not always correct. As 
explained in the following sub-sections, the creation of a formal model of an FTP 
server using the B Method helped us to clarify validity conditions for that check, and 
to discover other related checks, which were subsequently implemented in an 
inconsistency checking tool. 
 
Overview of the FTP server model 
 
As the first step in the formal development of the inconsistency checking tool, a 
formal model of an FTP server was developed. It is schematically depicted in Figure 
2.  Since we are only interested in the relationship between timestamps on files and 
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on log file entries, a number of assumptions have been made to simplify the formal 
model.  These are as follows: 
 

• Only the components relevant to the making and storage of timestamps are 
modelled. This includes: the FTP file repository (called the fileStore), the 
system clock, and the FTP log file. 

 
• Files have numerical IDs (slot numbers) instead of textual names, because 

we only use file names to distinguish files from each other. The name of a file 
has no effect on its timestamps. 

 
• There are no sub-directories in the FTP repository model, because the place 

of a particular file in the file tree hierarchy does not affect its modification 
timestamp3. 

 
• Deleted files are left outside of the model scope.  To formulate and analyse 

consistency properties described in this paper the evidence available in 
unallocated file entries was not necessary.  For the sake of formal simplicity, 
such evidence has been left outside of the model scope.  Note, however, that 
such evidence can be easily added into the model, if it is required for proving 
some additional consistency property. 

 
• Only the last modification time (mtime) of every file is modelled.  Again, only 

the last modification time was needed for formulating and reasoning about the 
consistency properties described in this paper, and for the sake of formal 
simplicity all other timestamps have been left outside of the model scope. 

 
According to the above assumptions, the FTP file repository is modelled as an array 
of file entries, where each entry stores information about one file attribute, namely 
the last modification time (mtime).  The elements of the array are referred-to by their 
unique file IDs called slot numbers or slots.  Note that it is easy to extend this model 
to hold other file attributes as well.  
A clock counter that is continuously updated models the progress of time, and we 
model the modification of a file in the file system by assigning the current clock value 
to the mtime attribute of the file. 

                                                 
3 This may not be the case for sub-directories, but we exclude them from consideration. 



International Journal of Digital Evidence                                Fall 2007, Volume 6, Issue 2 
 

www.ijde.org  12

 
Figure 2 - Main elements of the FTP server model. 

 

The FTP log file is modelled as a list of file modification events, where each log entry 
is represented as a triple of the form (TStamp,Event,Slot). TStamp corresponds to 
the time the event has occurred. Event identifies the type of event, and this can be 
either MODIFY or DELETE, corresponding to file uploading and file deletion events, 
respectively. Slot identifies at which position in the file system a file should be 
modified/deleted in the case of a file modification/deletion event. 
 
Next, we formalised the consistency properties for our model (i.e. the relations 
between timestamps in the file store and timestamps in the log file). The first of these 
properties corresponds to the informal consistency property (†) stated at the end of 
the previous section.  This was expressed as a logical formula in terms of our model, 
whose exact meaning in plain English is as follows: 
 

Consistency property 0. If the last MODIFY event (in the log file) for a file X is 
not followed by a DELETE event, the timestamp of the last MODIFY event in 
the log, should be equal to the timestamp on the file X. 
 

During model creation, we realised that a number of other consistency properties 
should hold in the model. These were also formalised and included into the 
INVARIANT clause.  These informal meaning of these additional properties is as 
follows: 
 

Consistency property 1.  The order of timestamps reflects the order of 
MODIFY events that produced these timestamps. That is, given two 
timestamps, a timestamps with the greater value corresponds to the MODIFY 
event which occurred later. 
 

(12:00:00, modify, 0) 
log 

0 

1 

…

M
  fileStore 

mtime: 12:00:00 

slot: 0 

12:00:35 

(12:00:10, modify, 2) 

(12:00:15, delete, 1) 

(12:00:35, modify, N)

2 

mtime: 12:00:10

slot: 2 

mtime: 12:00:35

slot: N 
…

clock 

DELETE(slot) 
MODIFY(slot) 
CLK 

Events: 
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Consistency property 2. If the last MODIFY event for a given file has a 
corresponding DELETE event following it, then the file should not be present 
in the file store; and vice versa – if there is a file present in the file store, then 
the last event for that file must not be a DELETE event (it must be a MODIFY 
event). 
 

Overview of the formal model 
 
We have used the B Method (Abrial, 1996) to express the abstract FTPServer model 
formally. Using B, we specify the system state by introducing state variables 
(introduced in the VARIABLES clause), and we model state transitions by means of 
operations (introduced in the OPERATIONS clause). The requirements (properties) 
that we want to verify to hold for our model are specified in the INVARIANT clause. 
In our case, these properties are the three consistency conditions for modification 
times presented in the previous subsection. We have used the Event-B (Métayer, 
Abrial & Voisin, 2005) based approach, in which operations are viewed as events 
triggered by the external environment (e.g., an application program modifying a file). 
Events are specified as guarded substitutions in Event-B. These guarded 
substitutions are of the form SELECT P THEN S END, or ANY params WHERE P 
THEN S END  in the case of parameterised events. The semantics of the guarded 
substitutions is that an event is in the waiting (hibernating) state until the guard P 
becomes true. When the guard P evaluates to true, the substitutions S are 
performed. The complete B FTPServer model can be found in the appendix of this 
paper. Next, we describe how the FTPServer events are specified in our formal 
model. Intuitive graphical representations of the events (using UML activity 
diagrams) are given next to the event definitions. 
 
The clock event models the time progress in our system, and it is specified by an 
assignment to the clk variable (incrementing the current value of clk), as shown 
below.  
 

clock = 
BEGIN 
         clk := clk + 1 
END; 
 

 
 

The clock event is enabled at all times (its guard is simply true), to model the 
continuous progress of time. 
 
The file modify event in our model is specified using the ANY guarded substitution 
for introducing the local parameter slot, which identifies the position in the file system 
(modelled by the state variable fileStore) where the file to be modified is located. 
When the modify event is enabled, the action specified by our abstract model is to 
assign the current value of the clock counter (modelled by the variable clk) to 
position slot in the fileStore, as shown in the below extract.  
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ANY slot WHERE slot ∈ FILESLOT 
THEN 
          fileStore(slot) := clk || 
       log := log ← (clk,MODIFY,slot) 

 END; 
 

 
 
Simultaneously, we append an entry (clk,MODIFY,slot) to the end of the transaction 
log, to identify which slot has been affected by the modify event. We have modelled 
the transaction log using a sequence variable log. 
 
In addition to modelling modification of files, we also model the deletion of files in our 
file store by the delete event. The body of the delete event is shown below. 
 

ANY slot WHERE slot ∈ FILESLOT 
∧ slot ∈ dom(fileStore) 
THEN 
           fileStore := {slot} fileStore || 
          log := log ← (clk,DELETE,slot) 
END 
 

 
 
The delete event is enabled when some slot exists in the file store (i.e., there exists 
some modification time record for the slot). The body of the event is specified using 
the domain subtraction substitution, which has the effect of removing the 
modification time record for the slot in question from the file store. Similarly to the 
modify event, an entry of the form (clk,DELETE,slot) is appended to the end of the 
transaction log, to indicate that a deletion event for the specified slot occurred at time 
clk. 
 
It is possible that a log might be truncated (or completely cleared) when a certain 
limit has been reached.  This happens, for example, when the server administrator 
erases old log files. Our specification takes this possibility into account by 
introduction of the trunc_log event.  The trunc_log event becomes enabled when the 
current size of the transaction log exceeds the maximum size allowed (modelled by 
the constant max_log_size). The body of trunc_log is specified as follows: 



International Journal of Digital Evidence                                Fall 2007, Volume 6, Issue 2 
 

www.ijde.org  15

ANY tval WHERE tval ∈ N1   
          ∧  tval ≤ max_log_size 
THEN 
     log := log↓tval 
END 
 

 

It non-deterministically selects a positive natural number tval less than the maximum 
allowed log size (max_log_size). The substitution log := log�tval then drops the first 
tval elements from the beginning of the log sequence.  Removal of elements from 
the log results in the loss of information about the past operation of the system. After 
truncation there may be files in the file store that no longer have associated entries in 
the log.  The formal model takes this into account by requiring the formulated 
invariant properties to hold only for those slots that are (1) present in the fileStore 
and (2) have associated entries in the log.  
 
The consistency properties that should hold in our model are then expressed as part 
of the state invariant.  As an example, the first part of consistency property 1 (see 
previous section) is introduced into the invariant in the following way: 
 
∀(slotX,slotY).(slotX ∈ dom(fileStore) ∧ slotY ∈ dom(fileStore)  ∧ (slotX ≠ slotY) ∧  
LAST_INDEX(fileStore(slotX),MODIFY,slotX) < LAST_INDEX(fileStore(slotY),MODIFY,slotY) 

⇒   fileStore(slotX) ≤ fileStore(slotY)) 
 

Universal quantification ( is used to state that the property should hold for all distinct 
values slotX and slotY in the fileStore. For such slots, in case the last occurrence of 
a modify event for slotX is preceding the last occurrence of a modify event for slotY, 
it needs to be the case (logical implication) that the modification timestamp of slotX 
in the fileStore is less than or equal to the modification timestamp of slotY. The 
LAST_INDEX definition returns the index position for the last occurrence of an event 
(here, modify) for a given slot in the log. The other consistency properties for FTP 
are formulated in a similar way. 
 
We have used the ProB (Leuschel & Butler, 2003) tool (the animator and the 
temporal model checker) for the initial validation of the B formal model, and the 
automatic and interactive provers of Atelier-B (Steria, 2001) have been used to 
discharge the associated consistency proof obligations.    
 
ConAlyzer: an inconsistency checker for FTP server logs 
 
Apart from rigorous verification of consistency properties, another major benefit of 
using the B Method turned out to be the ease of implementing the formalised 
inconsistency checker in software.  Having formally verified consistency properties of 
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FTP servers, we found that these properties could be easily converted into a handful 
of SQL statements searching evidential data for violations of these properties.  
 
Initially, we considered the use of the Microsoft LogParser toolkit (Microsoft, 2005) 
as the basis of our inconsistency checker. The LogParser toolkit is an incident 
analysis tool that can extract information from many types of operating system 
objects (logs, file systems, etc.) and filter this information using SQL queries.  
Unfortunately, the subset of SQL supported by the current implementation of the 
LogParser toolkit is rather limited.  In particular, it cannot perform SQL queries that 
relate (join) several different data sources.  This was perceived as a major limitation 
from consistency checking point of view, because much of unobvious 
inconsistencies are found by comparing information contained in different sources of 
evidence. 
 
In the end it was decided to use an open sourced, embeddable database engine 
SQLite4 as the basis for our FTP server inconsistency checking tool, which has been 
called “ConAlyzer” (Consistency Analyzer).  The default data import capabilities of 
SQLite have been expanded with data carving functionality (based on regular 
expressions), and the ability to execute third party utilities.  ConAlyzer GUI is written 
in Tcl/Tk.  A screenshot of the GUI is shown in Figure 3. 
 

 

Figure 3 – ConAlyzer GUI. 

                                                 
4 http://www.sqlite.org 
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ConAlyzer input consists of two files: the FTP server log file, and the file with a list of 
file timestamps.  ConAlyzer creates two tables (fileStore and log) and imports the 
content of both files into these tables.  After that, ConAlyzer performs consistency 
checks on the information contained in the tables.  
 
In our experiments we copied the FTP log file from the live system and used the 
grave-robber tool5 to obtain file timestamp information about the files in the FTP file 
repository.  Although we performed a “live” analysis of the system, there same kind 
of information can be obtained from disk images using a variety of digital forensics 
tools – both commercial (EnCase, FTK) and open source (The Sleuth Kit’s icat, 
fls/ils). 
 
ConAlyzer is not yet publicly released, but if you are interested in experimenting with 
it, please contact the authors directly. 
 
 
Section 4: Conclusions 
 
In this paper, the application of the B Method for the analysis of correctness of digital 
evidence inconsistency checks has been explored.  The following positive aspects 
have been identified: 
 

1. The use of formal methods facilitates rigorous analysis of inconsistency 
checks. 

2. The need to develop a formal model helps the investigator to better 
understand the system. 

3. Formal inconsistency checks can be converted into succinct SQL 
statements. 

4. An SQL-based tool supporting the automatic analysis of inconsistency 
checks has been developed. 

 
On the negative side, formal analysis requires considerable time to develop a formal 
model and to formalise properties.  The not-so-mathematical syntax of B helps in this 
process. Formal development would be justified, when correctness of analysis is 
crucial. This could be forensic analysis in high-profile cases, and development of 
commercial digital forensics tools. 
 
The application of formal methods to the analysis of digital evidence is relatively 
new, and therefore it does not exist much related work in the area. Stephenson 
(2003) presents an approach to the formal modelling of root cause analysis, for 
which he employs coloured Petri nets. The idea of the root cause analysis is to trace 
the origin (root cause) of an incident in order to be able to prevent similar incidents 
from occurring in the future. The use of formal modelling helps to bring more 
confidence into such analysis. Leigland and Krings (2004) explore a formalisation of 
digital forensics. 
 

                                                 
5 http://www.fish2.com/tct/ 
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Our future research will concentrate on extending the formal analysis to other areas 
of digital forensics, and on the application of the formal approach to the analysis of 
other types of forensic artefacts. 
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Appendix: The formal B FTPServer specification 
 
MACHINE FTPServer    
 
DEFINITIONS   
   MODIFY == 1;   
   DELETE == 2;   
   FILESLOT ==  N ; 
   TIMESTAMP == N ; 
   EVENT ==  N ; 
   LAST_INDEX(X,Y,Z) == max(dom(log {(XαYαZ)}))   
    
CONSTANTS max_log_size   
 
PROPERTIES max_log_size ∈ N1   
 
VARIABLES fileStore, clk, log   
 
INVARIANT  
 
fileStore ∈ FILESLOT  TIMESTAMP ∧     
clk ∈ N   ∧    
log ∈ seq(TIMESTAMP×EVENT×FILESLOT) ∧   
  
 /* Property 0 */ 
 
 (∀(slot,mtime,dtime).(slot ∈ TIMESTAMP ∧ mtime ∈ TIMESTAMP  ∧ dtime ∈ TIMESTAMP ∧ 
(mtime,MODIFY,slot) ∈ ran(log) ∧  
    ∀otime.(otime ∈ TIMESTAMP ∧ (otime,MODIFY,slot) ∈ ran(log)   ⇒  mtime≥otime)  ∧ 
      dtime>mtime ∧  (dtime,DELETE,slot) ∉ ran(log)     

⇒  fileStore(slot) = mtime))  ∧ 
 
/* Property 1 */ 
 
(∀(slotX,slotY).((slotX ∈ dom(fileStore) ∧ (fileStore(slotX),MODIFY,slotX) ∈ ran(log) ∧ slotY ∈ 
dom(fileStore)  ∧ (fileStore(slotY),MODIFY,slotY) ∈ ran(log) ∧  (slotX ≠ slotY)) ⇒  
(LAST_INDEX(fileStore(slotX),MODIFY,slotX) < LAST_INDEX(fileStore(slotY),MODIFY,slotY) 
    ⇒ fileStore(slotX) ≤ fileStore(slotY)))) ∧   
 
 (∀(slotX,slotY).((slotX ∈ dom(fileStore) ∧ (fileStore(slotX),MODIFY,slotX) ∈ ran(log) ∧ slotY ∈ 
dom(fileStore) ∧ (fileStore(slotY),MODIFY,slotY) ∈ ran(log) ∧ (slotX ≠ slotY)) ⇒  
(fileStore(slotX) < fileStore(slotY)  

⇒ (LAST_INDEX(fileStore(slotX),MODIFY,slotX) < 
LAST_INDEX(fileStore(slotY),MODIFY,slotY)))))   ∧   
 
 /* Property 2 */ 
 
∀(slot,mtime,dtime).(slot ∈ TIMESTAMP ∧ mtime ∈ TIMESTAMP ∧ dtime ∈ TIMESTAMP ∧ 
(mtime,MODIFY,slot) ∈ ran(log) ∧ (dtime,DELETE,slot) ∈ran(log) ∧   dtime>mtime  ∧  
LAST_INDEX(mtime,MODIFY,slot) <  LAST_INDEX(dtime,DELETE,slot) ∧  ∀otime.(otime ∈ 
TIMESTAMP ∧ otime≥dtime ⇒ (otime,MODIFY,slot) ∉ ran(log))  
      ⇒ slot ∉ dom(fileStore))   
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INITIALISATION fileStore := ∅ || clk := 0 || log := [ ]  /* initial state of the model */ 
 
OPERATIONS  /* events of the model */ 
 
clock =   
    BEGIN   
       clk := clk + 1    
    END; 
     
trunc_log =   
 SELECT size(log) ≥ max_log_size 
 THEN  
   ANY tval WHERE tval ∈  _4_s20 N1  ∧ tval ≤ max_log_size 
   THEN 
      log := log↓tval     
   END 
 END; 
     
 
modify =   
   ANY slot WHERE slot ∈ FILESLOT 
   THEN 
     fileStore(slot) := clk ||       
     log := log ← (clkαMODIFYαslot)     
   END; 
 
delete =   
  ANY slot WHERE slot ∈ FILESLOT ∧ slot ∈ dom(fileStore) 
  THEN 
     fileStore := {slot} fileStore || 
     log := log ← (clkαDELETEαslot)   
  END 
              
END   

 


